摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
最近,出现了一种新的蛋白质蛋白质相互作用研究的方法。可以使用田野和同事开发的“两杂交系统”(1,2)来寻找新的相互作用蛋白质,或者验证和表征可能会根据遗传或生物化学数据关联的蛋白质之间的相互作用。两种杂交系统是一种分子遗传方法,它利用酵母转录因子GAL4的结构柔韧性。GAL4蛋白包含两个结构域,即DNA结合域和转录激活剂结构域。这两个结构域不必成为同一蛋白的一部分来完成转录激活(3)。当两个结构域分别融合到两个无关但相互作用的蛋白质时,由于蛋白质 - 蛋白质相互作用,可以实现转录激活。通常,使用两种杂交系统对新的相互作用蛋白进行搜索是通过将含有UASC的集成拷贝的酵母菌菌株共转换。1J-LACZ报告基因和两个质粒(2,4-6)。一个质粒编码GAL4的DNA结合结构域与感兴趣的蛋白质的融合,而另一个质粒(库质粒)编码GAL4转录激活结构域的融合以随机生成的编码区域。因此,DNA结合结构域融合将与报告基因上游的UASGAL元件结合。如果由文库融合质粒编码的蛋白质与感兴趣的蛋白质相互作用,则转录激活结构域成为报告基因上游的共定位,从而导致转录激活。有效使用两个杂交系统需要产生大量的酵母转化体。由于酵母的转化仍然比细菌的效率低四个数量级,因此对于详尽的cDNA文库筛网来说,转化可能是限制步骤。在本文中,我们设计了一种简单的方法,可以消除对转化的需求,并允许用户搜索
抽象脂质体是可以封装各种药物的多功能载体。但是,要向大脑传递,必须通过靶向配体或其他修饰进行修饰,以提供血脑屏障(BBB)的渗透性,同时避免通过聚乙烯甘油(PEG)修饰通过网状内皮系统快速清除。BBB渗透肽充当脑靶向配体。在这项研究中,为了实现脂质体有效的大脑递送,我们基于使用体外BBB通透性评估系统的高通量定量评估方法,筛选了先前报道的八个BBB渗透肽的功能,该方法使用Transwell,在原位脑灌注系统等。For apolipoprotein E mimetic tandem dimer peptide (ApoEdp), which showed the best brain-targeting and BBB permeability in the comparative evaluation of eight peptides, its lipid conjugate with serine–glycine (SG) 5 spacer (ApoEdp-SG-lipid) was newly synthesized and ApoEdp-modified PEGylated liposomes were准备。apoEDP修饰的卵子脂质体有效地与人脑毛细血管内皮细胞通过ApoEDP序列有效相关,并在体外BBB模型中渗透了膜。此外,在大脑中积累的apoEDP修饰的卵形脂质体比小鼠中的脂肪体高3.9倍。此外,通过三维成像和组织清除,证明了apoEDP修饰的pe乙型脂质体在小鼠中局部将BBB局部局部到脑实质中的能力。这些结果表明,ApoEDP-SG脂质修饰是一种有效的方法,它可以赋予具有脑靶向能力和BBB渗透性的质脂质体。
已知通过调节动力蛋白进行睫状运动的光响应性调节,但该机理尚未完全了解。在这里,我们报告了一个两头f/i1内臂动力蛋白的新型亚基,名为Dyblup,在动物精子中,单细胞绿色藻类。该亚基包含一个BLUF(使用FAD的蓝光传感器)域,该结构域似乎会直接调节Dynein活性,以响应光。Dyblup(Div>与Dynein相关的BLUF蛋白)介导了F/I1运动结构域与将电动机与Doublet微管联系起来的系带络合物之间的连接。缺乏染色的直系同源物的衣原体既表现出阳性和负面光,但是被适应并吸引了高强度的蓝光。这些结果表明,通过直接照相染料素来避免有毒的强光。
使用的缩写:ACK,激活的CDC42相关酪氨酸激酶; GEF,鸟苷核苷酸交换因子; PH,Pleckstrin同源性; DH,DBL同源性; PIP 2,磷脂酰肌醇4,5-双磷酸;间隙,GTPase激活蛋白; GDI,鸟苷核苷酸解离抑制剂; SRF,血清反应因子; NF-κB,核因子κB; Jnk,c-jun n末端激酶;婴儿床,cdc42/rac-Interactive结合; REM,Rho ectector同源性; RKH,ROK – Kinectin同源性; MLC,肌球蛋白轻链; PI-4-P5K,磷脂酰肌醇-4-磷酸5-激酶; GTP [s],鸟嘌呤5« - [γ -thio]三磷酸; MAP激酶,有丝分裂原激活的蛋白激酶; MLK,混合细胞激酶; ACC,反平行线圈; BTK,布鲁顿的酪氨酸激酶; MBS,肌球蛋白结合亚基; ERM,Ezrin/radixin/Moesin; FH,形态学;黄蜂,Wiskott-Aldrich-Syndrome蛋白;波浪,黄蜂样的垂直蛋白质蛋白; lim激酶; EGF,表皮生长因子; TNFα,肿瘤坏死因子α; Mekk,地图激酶激酶激酶; PAK,P21激活的激酶; PKN,蛋白激酶N; MRCK,肌发育症激酶相关的CDC42结合激酶。1应向谁致辞(电子邮件Anne.bishop!ucl.ac.uk)。
图。5:用酪蛋白钝化的悬臂背面的AFM图像在0.5pm T5溶液的溶液中孵育1.5h(箭头标记T5噬菌体或可能的酪蛋白聚集体)请注意,这里的条件与手稿中呈现的原位实验不同。
基因组分析是许多微生物学研究人员日常工作的一部分。这些分析经常揭示以不确定功能编码蛋白质的基因,对于许多细菌物种,这些未知基因构成了其基因组编码序列的显着比例。由于这些基因没有定义的功能,因此在分析中通常会忽略它们。实验确定基因的功能可能具有挑战性;但是,生物信息学工具的持续进步,尤其是在蛋白质结构分析中,使得逐渐更容易地将功能分配给假设序列。利用各种互补工具和自动化管道来注释假设序列,最终可以增强我们对微生物功能的理解,并为新的实验室实验提供方向。
多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
在本文中,我们讨论了基于融合蛋白的 SARS-CoV-2 疫苗的特征。我们重点研究了重组疫苗抗原,该疫苗抗原由融合蛋白组成,融合蛋白由 SARS-CoV-2 衍生的抗原或肽的组合或 SARS-CoV-2 抗原/肽与 SARS-CoV-2 无关的蛋白质/肽的组合组成。这些融合蛋白是为了增加疫苗抗原的免疫原性和/或实现免疫系统的特殊靶向性。基于蛋白质的疫苗方法仅在概念验证研究中得到举例说明,该研究使用 W-PreS-O,一种基于单一融合蛋白 (W-PreS-O) 的嵌合疫苗,将来自武汉 hu-1 野生型和 Omicron BA.1 的 RBD 与吸附于氢氧化铝的乙肝病毒 (HBV) 衍生的 PreS 表面抗原相结合。在感染 Omicron BA.1 之前,对叙利亚仓鼠进行了 W-PreS-O 疫苗评估,这些仓鼠每隔三周接种 W-PreS-O 或氢氧化铝(安慰剂)三次。通过 RT-PCR 测量上呼吸道和下呼吸道的中和抗体 (nAB) 滴度、体重、肺部症状和病毒载量。此外,还使用斑块形成试验测量了肺部的传染性病毒滴度。我们发现接种 W-PreS-O 疫苗的仓鼠产生了针对 Omicron BA.1 的强效 nAB,几乎没有出现肺炎,并且肺部的传染性病毒滴度显著降低。重要的是,接种 W-PreS-O 疫苗的仓鼠鼻腔中的病毒载量接近或高于 PCR 循环阈值
