多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
全球心血管疾病(CVD)患病率持续上升,已成为全球人口死亡的主要原因。动脉粥样硬化(AS)是心血管疾病的主要诱因,它在早期悄无声息地开始,最终导致不良心血管事件,严重影响患者的生活质量或导致死亡。血脂异常,尤其是低密度脂蛋白胆固醇(LDL-C)水平升高,是 AS 发病机制中的独立危险因素。研究表明,动脉壁内异常的 LDL-C 积聚是动脉粥样硬化斑块形成的重要诱因。随着病情进展,斑块积聚可能破裂或脱落,导致血栓形成和完全的血液供应阻塞,最终导致心肌梗死、脑梗死和其他常见的不良心血管事件。尽管针对降低 LDL-C 的药物治疗已足够,但心脏代谢异常患者仍然面临较高的疾病复发风险,这凸显了解决 LDL-C 以外的脂质风险因素的重要性。最近的注意力集中在甘油三酯、富含甘油三酯的脂蛋白 (TRL) 及其残留物与 AS 风险之间的因果关系上。遗传学、流行病学和临床研究表明 TRL 及其残留物与 AS 风险增加之间存在因果关系,这种血脂异常可能是不良心血管事件的独立风险因素。特别是在患有肥胖、代谢综合征、糖尿病和慢性肾脏疾病的患者中,紊乱的 TRL 及其残留物水平会显著增加动脉粥样硬化和心血管疾病发展的风险。血浆中过量合成的TRLs的积累、参与TRLs脂肪分解的酶的功能受损以及肝脏对富含胆固醇的TRLs残留物的清除受损,可导致TRLs及其残留物在动脉中沉积,促进泡沫细胞形成和动脉壁炎症。因此,了解TRLs诱导的AS的发病机制并对其进行治疗可以减缓或阻止AS进展,从而降低心血管疾病的发病率和死亡率,特别是冠状动脉粥样硬化性心脏病。
先天免疫反应代表了防御入侵病原体的第一线。活性氧(ROS)和反应性氮种(RNS)与先天免疫功能的各个方面有关,涉及呼吸道爆发和浮力杂志的激活。这些反应性物种在细胞环境中广泛分布是短暂的中间体,在细胞信号传导和增殖中起着至关重要的作用,并且很可能取决于其亚细胞位点的折误。NADPH氧化酶复合物会产生超氧化阴离子(O 2• - ),该激素是过氧化抗菌氢(H 2 O 2)的前体,而H 2 O 2由骨髓氧化酶(MPO)杀死,以杀死型酸(H2O)。h 2 o 2调节氧化还原响应的转录因子的表达,即NF-KB,NRF2和HIF-1,从而介导了基于氧化还原的表观遗传学修改。免疫细胞的存活和功能受到氧化还原对照,并取决于细胞内和细胞外ROS/RN。当前的综述着重于参与免疫反应激活的氧化还原因子以及ROS在蛋白质中氧化修饰中的作用在巨噬细胞极化和中性粒细胞功能中。
全身治疗仍然是晚期肝细胞癌 (HCC) 的主要治疗方法。尽管如此,其在控制肝内病变方面的疗效有限。肝动脉灌注化疗 (HAIC) 是一种将局部治疗与全身抗肿瘤作用相结合的治疗方法,旨在有效控制肝脏内癌性病变的进展,尤其是对于门静脉肿瘤血栓形成 (PVTT) 患者。将 HAIC 与抗程序性细胞死亡蛋白 1 (抗 PD-1) 单克隆抗体 (mAb) 免疫疗法相结合有望成为一种新型治疗方法,旨在增强局部肿瘤部位内的反应并实现延长生存期的优势。为了评估各种治疗方式的有效性、安全性和适用性,并解决 HAIC 增敏免疫疗法疗效的潜在分子机制,我们回顾了有关 HAIC 与抗 PD-1 mAb 疗法相结合的文献。
在本文中,我们讨论了基于融合蛋白的 SARS-CoV-2 疫苗的特征。我们重点研究了重组疫苗抗原,该疫苗抗原由融合蛋白组成,融合蛋白由 SARS-CoV-2 衍生的抗原或肽的组合或 SARS-CoV-2 抗原/肽与 SARS-CoV-2 无关的蛋白质/肽的组合组成。这些融合蛋白是为了增加疫苗抗原的免疫原性和/或实现免疫系统的特殊靶向性。基于蛋白质的疫苗方法仅在概念验证研究中得到举例说明,该研究使用 W-PreS-O,一种基于单一融合蛋白 (W-PreS-O) 的嵌合疫苗,将来自武汉 hu-1 野生型和 Omicron BA.1 的 RBD 与吸附于氢氧化铝的乙肝病毒 (HBV) 衍生的 PreS 表面抗原相结合。在感染 Omicron BA.1 之前,对叙利亚仓鼠进行了 W-PreS-O 疫苗评估,这些仓鼠每隔三周接种 W-PreS-O 或氢氧化铝(安慰剂)三次。通过 RT-PCR 测量上呼吸道和下呼吸道的中和抗体 (nAB) 滴度、体重、肺部症状和病毒载量。此外,还使用斑块形成试验测量了肺部的传染性病毒滴度。我们发现接种 W-PreS-O 疫苗的仓鼠产生了针对 Omicron BA.1 的强效 nAB,几乎没有出现肺炎,并且肺部的传染性病毒滴度显著降低。重要的是,接种 W-PreS-O 疫苗的仓鼠鼻腔中的病毒载量接近或高于 PCR 循环阈值
已经表明,单甲基化的帽结构在核事件中起着重要作用。盖结构与增强前mRNA剪接有关。最近,还建议这种结构促进RNA从细胞核到细胞质的转运。我们先前已经从HELA细胞核提取物中鉴定出并纯化了8OKD核盖结合蛋白(NCBP),这可能会介导这些核活性。在本报告中,我们描述了编码NCBP的互补DNA(cDNA)的克隆。确定了NCBP的部分蛋白质序列,并从HELA cDNA文库中分离出NCBP的全长cDNA。该cDNA编码了790个氨基酸的开放阅读框,其计算的分子质量为91,734 daltons,其中包含大多数确定的蛋白质序列。但是,蛋白质序列与任何已知蛋白质都没有显着同源性。转染实验表明,在HELA细胞中瞬时表达的表位标记的NCBP仅在核质中定位。使用截短的NCBP cDNA进行的类似实验表明,这种核定位活性由N末端70氨基酸区域赋予。
摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
基于基因组结构和复制策略的相似性,RNA病毒如今可分为“超类群”,通常涵盖动物病毒和植物病毒(Goldbach & Wellink,1988;Strauss & Strauss,1988)。这一概念也越来越多地体现在病毒分类学中;尤其是引入了分类单元“目”,将很可能拥有共同祖先的病毒科合并在一起(Mayo & Pringle,1998)。对于正链、有包膜的冠状病毒和动脉炎病毒(最近被统一归入巢病毒目,Cavanagh,1997),基于相似的多顺反子基因组结构、共同的转录和(后)翻译策略以及一系列同源复制酶结构域的保守性(den Boon et al.,1991),它们之间建立了密切的系统发育关系。因此,有可能勾勒出nidovirus生命周期的共同轮廓(图1)(详见Lai & Cavanagh,1997;de Vries et al.,1997;Snijder & Meulenberg,1998)。然而,在某些方面,这两个病毒家族彼此之间存在显著差异。例如,最大的冠状病毒基因组,鼠肝炎病毒(MHV),其基因组为31±5kb,约为最小动脉炎病毒基因组,即马动脉炎病毒(EAV)12±7kb RNA的两倍半。此外,这两个病毒家族的结构蛋白没有明显的相关性,导致病毒体的大小和结构存在重要差异(den Boon et al.,1991;Snijder & Spaan,1995;de Vries et al.,1997)。大多数主要的动物正链RNA病毒群体要么产生单个多聚蛋白,要么产生单独的非结构和结构前体多肽,这些多肽随后被病毒编码或宿主编码的蛋白酶裂解,产生功能性亚基(Dougherty & Semler, 1993)。相比之下,在基因组3′-近端区域编码的nido病毒结构蛋白,
摘要30S核糖体中核糖体蛋白Si的存在对于形成30S启动复合物具有天然mRNA是必不可少的。缺乏Si的30S亚基与AUP作为mRNA保持活性,并且在Phe-tRNA的Poly(Ru)定向结合中也有效。孤立的蛋白质si si si si术法破坏了螺旋和堆叠单链的多核苷酸的二级结构,并将其转换为完全或部分变性的形式。Si的单n-乙基酰亚胺衍生物几乎没有任何RNA螺旋螺旋的特性,但很容易将其纳入Si中缺陷的30S子单位中。所得的N-乙基马雷酰亚胺-S1-孔的30S亚基在MS2 [3H] RNA的结合中是完全不活跃的,并且在形成具有MS2 RNA作为mRNA的启动复合物中。,它们保留了响应三核苷酸AUP的启动剂FMET-TRNA的结合,并在响应于Poly(U)的Phe-tRNA结合中,它们还保留了结合50S亚基并形成70S夫妇的能力。这些结果表明,当蛋白成为30S亚基的一部分时,孤立的Si的RNA螺旋 - 无方向能力与Si在核糖体结合中的功能之间存在相关性。
