假单胞菌 KT2440 是一种强大的芳香分解代谢细菌,已被广泛改造用于将生物基和废物基原料转化为目标产品。为了对假单胞菌 KT2440 进行工业化驯化,之前已经进行了合理的基因组减少,从而产生了假单胞菌菌株 EM42,该菌株表现出可能对生产菌株有利的特征。在这里,我们比较了假单胞菌 KT2440 和 EM42 衍生菌株从芳香族化合物对香豆酸和在单独的菌株中从葡萄糖生产顺式、顺式-粘康酸的情况。令我们惊讶的是,EM42 衍生菌株在从任何一种底物生产粘康酸方面的表现并不优于 KT2440 衍生菌株。在生物反应器培养中,KT2440 和 EM42 衍生菌株分别以 45 g/L 和 37 g/L 的滴度从对香豆酸产生粘康酸,并以 20 g/L 和 13 g/L 的滴度从葡萄糖产生粘康酸。为了进一步了解亲本菌株之间的差异,我们分析了 KT2440 和 EM42 在芳香族化合物作为唯一碳源和能源时的生长情况。总体而言,EM42 菌株的生长速度比 KT2440 菌株低,但生长滞后时间更短。我们还观察到,与 KT2440 衍生菌株相比,EM42 衍生菌株在葡萄糖上的生长速度更高,但仅限于测试的最低葡萄糖浓度。转录组学显示,EM42 中的基因组减少对转录水平具有整体影响,并表明从葡萄糖产生粘康酸的 EM42 衍生菌株在响应葡萄糖浓度变化时表现出基因表达调节降低。总体而言,我们的研究结果表明,有必要进行进一步研究来了解基因组减少对微生物代谢和生理的影响,特别是当用于生产菌株时。
Acinetobacter Baumannii, Staphylococcus capnocytophaga Haemolytica, Pseudomonas fluorescens, Staphylococcus horses, Actinomyces Israelii, Staphylococcus Epidermidis, Capnocytophaga Ochracea, Pseudomonas Mosselii, Streptobacillus moniliformis, Bordetella tunnels,葡萄球菌血液溶血,囊孢子虫,pseudomonas putida,链球菌,Gallolyticus,Burkholderia cepacia,葡萄球菌,弯曲球菌,弯曲球菌Ococcus沙门氏菌肠道SSP。 div>Acinetobacter Baumannii, Staphylococcus capnocytophaga Haemolytica, Pseudomonas fluorescens, Staphylococcus horses, Actinomyces Israelii, Staphylococcus Epidermidis, Capnocytophaga Ochracea, Pseudomonas Mosselii, Streptobacillus moniliformis, Bordetella tunnels,葡萄球菌血液溶血,囊孢子虫,pseudomonas putida,链球菌,Gallolyticus,Burkholderia cepacia,葡萄球菌,弯曲球菌,弯曲球菌Ococcus沙门氏菌肠道SSP。 div>
摘要:许多生态因素会影响植物的生存和生长能力,其中干燥对干旱和半干旱地区的植物生长有很大的限制。响应特定的环境压力,植物可以使用最有效的细菌来支持和促进其生长和发育。今天,促进根瘤菌(PGPR)的植物生长被广泛用于减轻植物生长的干旱压力。在这项研究中,干旱对Festuca ovina L.发芽,生长和营养吸收的影响在阶乘测试中使用PGPR进行了四个水状态下的完全随机设计。土壤含水量保持在100%FC(现场容量),70%FC(FC),50%FC和30%FC。用氮杂杆菌Vinelandii,Pantoea grogomerans + Pseudomonas putida和生物肥料的混合物接种处理。的结果表明,当分别使用A. vinelandii和P. grogomerans + P. p. putida时,干旱应激的影响显着降低(P <0.05),但是,生物肥料的综合治疗对种子发芽的影响要比单个应用更大。P. agromerans + P. p.utida在30%FC的条件下导致茎,根长度和植物干生物量的增加。在30%的FC条件下,观察到最高的营养摄取量是对生物肥料的综合治疗。因此,使用分别应用或组合使用的A. vinelandii和P. groclomerans + P. p.putida,通过增加的发芽指数,干重,茎长和根长度来增加对卵藻中干旱胁迫的耐受性。由于PGPR对干旱条件下植物的生长特征的有益作用以及干旱压力的负面影响的减少,因此建议使用氮杂杆菌和假单胞菌进行接种。pgpr作为一种负担得起的环保方法,可以改善水压缩牧场中的草料生产。
摘要。Mugiastuti E,Manan A,Soesanto L.2023。玉米唐尼霉菌的生物控制与拮抗细菌联盟。生物多样性24:4644-4650。唐尼霉菌是玉米的主要疾病之一,这是印度尼西亚玉米生产的限制因素。拥有玉米 - 土著拮抗剂细菌的财团,预计生物控制将减少霉菌。这项研究的目的是确定三种拮抗细菌杆菌氨基甲基菌Faciens BB.R3,枯草芽孢杆菌BB.B4,Pseudomonas putida bb.r1在抑制Peronoslerospora spp。基于研究结果,拮抗细菌B. amyloliquefaciens bb.r3,B。B。uttilis bb.b4和P. putida bb.r1能够抑制76.68-100%的孢子发芽。枯草芽孢杆菌BB的细菌联盟。b4 +假单胞菌putida bb.r1是拮抗细菌的最佳财团,并且具有最大的潜力作为质感控制并促进玉米的生长。这个细菌财团延迟了孵化期,降低了疾病的强度(85.77%)和AUDPC(83.02%),增加了酚含量(单宁,糖苷,糖苷和皂苷),并促进了植物的生长,并促进了工厂高度(工厂高度138.10%的工厂,植物的重量为102.29%,植物的重量为102.29%,植物的重量为102.29%。与对照相比,为1077.04%)。与杀菌剂金属酰基相比,用拮抗细菌治疗的结果更好。基于结果,应用拮抗细菌财团是控制玉米唐尼霉菌的潜在策略。
稀土元素(REE),其成功在于其磁性,光学和电性能。一个挑战是在不久的将来找到REE的次要来源。大量产生的许多废物是回收这些关键金属(例如铝土矿残基(氧化铝提取的残基)或磷酸盐加工中的残基)的潜在良好候选物(Westerhoff等人(Westerhoff等)2015)。在这种情况下,最近发现了甲基营养细菌对某些REE的生物学利用(综述Daumann,2019; Cotruvo,2019年),然后是其他细菌,例如根磷菌P. putida,由P. Billard(Univ。Lorraine)和J. Klenbensberger(Wehrman等,2017)提供了有趣的观点。Light Rees(La to Nd)对于在甲基营养细菌的代谢中的关键酶的活性至关重要(Nakagawa等,2012; Pol等,2014)以及酒精脱氢酶,Pedh,P。P. P. Putida。REES的生物学使用涉及仍然未知的有效检测,运输和螯合系统。该项目的目的是开发一种金属蛋白质组学方法,以识别P. p. putida中的蛋白质。该项目将涉及对培养基中分泌的蛋白质的分析,该蛋白质可能在REE获取,周围蛋白(如PEDH)和细胞质蛋白质中发挥作用。在这三个池上,我们将在阴离子交换树脂上结合分离和尺寸排除色谱法。并将涉及其实验室的工作任务包含REE的分数将由ICP-MS识别。为了减轻具有复杂蛋白质池以鉴定Ree-tos结合蛋白的风险,该项目涉及在天然条件下通过丙烯酰胺凝胶电泳分离,然后通过激光消融对RT分析,并通过激光消融耦合到CEREGE的ICP-MS。 含有REE的部分中蛋白质的性质将通过蛋白质组学分析确定(在与J. Armengaud(Cea-Marcoule)的合作框架内)。 最有希望的蛋白质将在大肠杆菌中产生及其与REE的相互作用在体外的特征。 该项目意味着使用分子生物学,生物化学,光谱(光学,荧光)和ICP-MS的多学科方法。 它将与Patrick Billard(Liec,Univ-Nancy),Blanche Collin和ClémentLevard(Cerege,Aix-Marseille Univ)进行密切合作。包含REE的分数将由ICP-MS识别。为了减轻具有复杂蛋白质池以鉴定Ree-tos结合蛋白的风险,该项目涉及在天然条件下通过丙烯酰胺凝胶电泳分离,然后通过激光消融对RT分析,并通过激光消融耦合到CEREGE的ICP-MS。含有REE的部分中蛋白质的性质将通过蛋白质组学分析确定(在与J. Armengaud(Cea-Marcoule)的合作框架内)。最有希望的蛋白质将在大肠杆菌中产生及其与REE的相互作用在体外的特征。该项目意味着使用分子生物学,生物化学,光谱(光学,荧光)和ICP-MS的多学科方法。它将与Patrick Billard(Liec,Univ-Nancy),Blanche Collin和ClémentLevard(Cerege,Aix-Marseille Univ)进行密切合作。
假单胞菌 KT2440 是一种研究较为深入的细菌,可将木质素衍生的芳香族化合物转化为生物产品。假单胞菌中先进遗传工具的开发缩短了假设检验的周转时间,并使得能够构建能够生产各种目标产品的菌株成为可能。在这里,我们评估了可诱导 CRISPR 干扰 (CRISPRi) 工具集对荧光、必需和代谢靶标的作用。结果表明,用阿拉伯糖 (8K) 诱导启动子表达的核酸酶缺陷型 Cas9 (dCas9) 在各种培养基条件下以及靶向必需基因时均受到严格调控。除了批量生长数据外,还进行了单细胞延时显微镜检查,结果显示同克隆群体中敲低率的内在异质性。在指数增长的细胞中,研究了跨基因组靶标的敲低动力学,发现诱导后普遍存在 1.75 ± 0.38 小时的静止期,其中发生 1.5 ± 0.35 次倍增后才会观察到表型反应。为了展示这套 CRISPRi 工具集的应用,β-酮己二酸(一种性能优越的尼龙单体)以 4.39 ± 0.5 g/L 的浓度和 0.76 ± 0.10 mol/mol 的产量从对香豆酸(一种可从禾本科植物中提取的羟基肉桂酸)中生产出来。这些培养指标是通过使用更高强度的 IPTG (1K) 诱导启动子在指数期早期敲低 β KA 途径中的 pcaIJ 操纵子来实现的。这使得大部分碳被分流到所需产品中,同时无需补充碳和能量来源来支持生长和维持。
表1:GMCS计算基准测试研究中使用的宝石摘要。我们考虑了大肠杆菌核心(Orth等人,2010年); E. Coli,IML1515(Monk等人,2017年); P. Putida,IJN1463(Nogales等人,2020); S. cerevisiae,酵母-GEM V8.7.0(Lu等,2019);和人类细胞,人类v1.16.0(Robinson等人。,2020年)。在人类细胞的情况下,我们考虑了两种情况:在最普遍的生长培养基(人类GEM V1.16.0)和HAM的生长培养基(Human-Gem v1.16.0_culturemedia)下。根据反应数量,代谢产物和基因的数量,考虑的每种情况的维度。最后三列分析是否(是否)考虑了所考虑的不同方法,可以将考虑的方法应用于搜索相应的GEM的GMCS。
微生物电化学系统可应用于生物修复、生物传感和生物能源,是生物、化学和材料科学中一个快速发展的多学科领域。由于这些系统使用活微生物作为生物催化剂,因此了解微生物生理学(即生物膜形成)如何影响这些电化学系统非常重要。具体而言,文献中缺乏评估生物膜对介导电子转移系统中代谢电流输出影响的研究。在本研究中,荚膜红杆菌和假单胞菌 GPo1 被用作模型,它们是通过可扩散的氧化还原介质促进电子转移的非致病菌株。一氧化氮作为一种气态信号分子在生物医学中引起了人们的关注,在亚致死浓度下,其可能会增强或抑制生物膜的形成,具体取决于细菌种类。在荚膜红杆菌中,一氧化氮处理与电流产量增加和生物膜形成改善有关。然而,在 P. putida GPo1 中,一氧化氮处理对应着电流输出的显著降低,以及生物膜的分散。除了强调使用电化学工具来评估一氧化氮在生物膜形成中的影响外,这些发现还表明,基于生物膜的介导电子转移系统受益于增加的电化学输出和增强的细胞粘附,与浮游生物相比,这有望实现更强大的应用。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据 Creative Commons 署名非商业性禁止演绎 4.0 许可证 (CC BY- NC-ND,http://creativecommons.org/licenses/by-nc-nd/4.0/) 的条款发布,允许在任何媒体中进行非商业性再利用、发布和复制,前提是不对原始作品进行任何形式的更改并正确引用。如需获得商业再利用许可,请发送电子邮件至:permissions@ioppublishing.org。[DOI:10.1149/1945-7111/acc97e]
随着合成生物学的努力变得更加雄心勃勃,活细胞中预定义功能的工程需要越来越准确的工具。此外,遗传构建体的表型性能的表征需要细致的测量和广泛的数据获取,以实现进食数学模型和沿设计构建测试生命周期的匹配预测。在这里,我们开发了一种遗传工具,可以简化高通量转座子插入测序(TNSEQ):携带HIMAR1 Mariner Transposase System的PBLAM1-X质粒载体。这些质粒源自Mini-TN5转座子矢量PBAMD1-2,并按照标准欧洲矢量体系结构(SEVA)格式的模块化标准构建。为了展示它们的功能,我们分析了60个土壤假单胞菌putida kt2440克隆的测序结果。新的PBLAM1-X工具已经包含在最新的SEVA数据库版本中,在这里我们使用实验室自动化工作流程描述其性能。