量子系统与其环境的相互作用导致量子相干的丧失。通常通过Ancilla,建立良好的储层工程方法调整量子系统与其环境的耦合,可以通过将有效的耗散性动态逐渐发展为量子量子状态或量子状态[1-6],从而克服了有效的耗散动力学来克服脱碳范式。尤其是在电路量子电差异的范围内[7],已经成功利用了储层工程,以自主保护在谐波振荡器的限制希尔伯特空间中编码的量子信息,即玻孔代码,而无需基于测量的反馈。这是通过有效的奇偶校验的工程来实现的,它保留了耗散的演化,该耗散演化将微波谐振器的状态驱动到由相反状态的均匀和奇数相干叠加跨越具有相反位移的歧义的歧管,也称为Schrödinger猫态[8-11]。原则上,这些耗散动态可用于准备猫代码的逻辑状态[9]。尽管如此,这不是必需的,因为使用最佳控制脉冲序列[10],可以使用分散耦合量子轴对微波谐振器场进行通用控制,或者正如最近已证明的那样,已证明,连续变量(CV)通用门集的优化序列[12,13]。因此,为了稳定CAT代码的唯一目的,储层工程是为了唯一的目的。
我们研究了量子信息流的动力学,其中一个和两个杂质量子位捕获了双孔电势,并与一维超低玻色 - 玻璃 - 玻璃 - 玻璃混合物相互作用。对于浸入二元玻色混合物中的单个量子量,我们表明该系统在有限的时间尺度上保持连贯性,并表现出非马克维亚动力学,尤其是在环境的上分支中。我们通过频谱密度函数的欧姆斯探索了从马尔可夫到非马克维亚的过渡,这些函数受到了种间相互作用的显着影响。在两个空间分离的量子位与Bose-Bose混合物储存库相连的情况下,我们证明了集体的脱碳影响系统动力学,从而导致混合物两个分支的长时间连贯性存活率。在密度光谱函数及其欧姆性特征中反映了破坏性因子的复杂演化。我们发现,反应函数和光谱随量顶之间的距离增加而振荡,从而修改了信息流动动力学。此外,我们对两个分支中二元玻色混合物储层引起的两个量子位之间的纠缠动力学进行了彻底的研究,强调了种间相互作用的关键作用。
Jonas Weissenrieder,材料物理学教授(KTH),评论,“量子材料构成了明天的量子创新的基石。我们在KTH上设想了量子应用材料空间中的巨大机会,其中包括新型光子探测器,磁场传感器和应变传感器。su,KTH和Nordita与WACQT和Novo Nordisk量子计算中心合作开发了量子支柱的材料。”
图3。在涉及数百万个量子点的10.5 k的耦合和未耦合激子的两级“宏观”量子状态的Rabi振荡。此类Rabi振荡较早仅报道了仅具有一个单个量子点的结构[3]。使用光电容测量的观察到的Rabi振荡实际上表明即使在我们的稳态光电容测量中探测的温度和时间尺度上,即使在这种温度和时间尺度上也“无关”。信用:今日材料电子产品(2023)。doi:10.1016/j.mtelec.2023.100039
我们在实验和数字上研究多部分纠缠状态的嘈杂演化,重点是通过云访问的超导量设备。我们发现,动力学的有效模式需要一个由随机电荷 - 偏向波动引起的连贯频移。我们介绍了一种方法,该方法使用扩展的马尔可夫环境建模了电荷 - 比值拆分。这种方法在数十个量子位上是可扩展的,使我们能够有效地模拟某些大型多Quipit状态的耗散动力学。探测越来越大,更复杂的初始状态的连续时间动力学,在环形状态下,最多12个耦合量子量,我们获得了实验和模拟的良好一致性。我们表明,基本的多体动力学会产生稳定器的衰减和复兴,这些动力在量子误差校正的背景下广泛使用。此外,我们使用定制的动力学去耦序列来证明两数Qubit的相互作用(串扰)的缓解。我们的噪声模型和数值方法对于提高对误差纠正和缓解的理解并邀请进一步研究其动态可能是有价值的。
“这一发现突出了诸如尖晶石之类的材料的令人难以置信的潜力,这些材料长期以来一直以其美学品质而闻名,但现在揭示了深刻的科学能力,” Liew Family教授兼芝加哥大学分子工程学院的Liew Family教授兼研究副院长David Awschalom教授说。
量子计算机需要误差校正以实现量子优势。他们还需要校准大量参数,以正确操作Qubits,这可能只有53 QUBITS的Google Sycamore需要几个小时。扩展量子计算需要快速,可扩展和屈曲反馈以实现量子误差校正(QEC)和加速校准。QEC和校准都需要电子设备,以测量,计算和应用最低潜伏期的反馈。使用当今的电子设备必须扩展到数千个Qubits。FPGA是理想的选择,因为它们可以重新编程以满足不同的实验需求,同时达到了非常低的反馈延迟。典型的量子操作实验(图1)涉及在室温下通过数字转换器(DAC)(DACS)和对数字转换器(ADCS)的模拟转换器(ADC)的FPGA网络。用于自旋Qubits,控制信号由两种类型组成。首先,基于纳秒坡道的准静态控制,以调整Qubits的潜在井和耦合以改变其状态。其次,通过I/Q调制控制的Ra-dio频率脉冲,用于测量或基于共振的控制。数字混合用于实现更复杂的控制方案和脉搏工程。完整的数字发电提高了灵活性并减少了噪声源。我们使用直接生成的坡道和频率梳子提出了可扩展的,复杂的信号发生器(CSG),以减少
最近提出了一种容错方法来准备 Q 1 码的逻辑码态,即编码一个量子比特的量子极性码。其中的容错性由错误检测装置保证,如果在准备过程中检测到错误,则完全丢弃准备。由于错误检测,准备是概率性的,其成功率(称为准备率)随代码长度的增加而迅速下降,从而阻止了大代码长度的代码状态的准备。在本文中,为了提高准备率,我们考虑工厂准备 Q 1 码态,其中尝试并行准备多个 Q 1 码态副本。使用额外的调度步骤,我们可以避免每次检测到错误时完全丢弃准备,从而反过来提高准备率。我们进一步提供了一种理论方法来估计使用工厂准备准备的 Q 1 码的准备和逻辑错误率,该方法被证明与基于蒙特卡洛模拟的数值结果紧密相关。因此,我们的理论方法可用于为大代码长度提供估计,而蒙特卡罗模拟实际上并不可行。对于电路级去极化噪声模型,我们的数值结果表明准备率显著增加,特别是对于较大的代码长度 N 。例如,对于 N = 256 ,对于实际有趣的物理错误率 p = 10 − 3 ,它从 0.02% 增加到 27%。值得注意的是,N = 256 的 Q 1 码在 p = 10 − 3 和 p = 3 × 10 − 4 时分别实现了大约 10 − 11 和 10 − 15 的逻辑错误率。与具有相似代码长度和最小距离的表面码相比,这相当于提高了大约三个数量级,从而表明所提出的方案用于大规模容错量子计算的前景。
摘要 随着扩展成为大规模量子 (LSQ) 计算的关键问题,硬件控制系统的资源成本将变得越来越高。本文介绍了一种适用于自旋量子位的信号生成紧凑型直接数字合成 (DDS) 架构,该架构在波形精度和同步通道数量方面是可扩展的。该架构可以以 5 GS/s 的速度产生斜坡、频率梳和任意波形生成 (AWG) 的可编程组合,最坏情况下的数字反馈延迟为 76.8 ns。基于 FPGA 的系统具有高度可配置性,并利用比特流切换来实现可扩展校准所需的高灵活性。该架构还提供 GHz 速率多路复用 I/Q 单边带 (SSB) 调制,用于可扩展反射测量。该架构已在 Xilinx ZCU111 FPGA 上的硬件中得到验证,展示了复杂信号的混合以及多路复用控制和测量的频率梳生成的质量。这种设计的主要优势在于提高了数模转换器 (DAC) 频率斜坡的控制能力,与现有的基于 AWG 的架构相比,内存需求降低了几个数量级。单通道硬件非常紧凑,默认配置下,一个 DAC 通道仅占用 2% 的 ZCU111 逻辑资源,为集成反馈、校准和量子误差校正 (QEC) 留下了大量电路资源。
受控操作是量子算法的基本组成部分。将 n 个控制非门 (C n (X)) 分解为任意单量子比特和 CNOT 门是一项重要但并非易事的任务。本研究引入的 C n (X) 电路在渐近和非渐近范围内的表现优于以前的方法。提出了三种不同的分解:一种是使用一个借用的辅助量子比特的精确分解,电路深度为 ΘðlogðnÞ3Þ,一种没有辅助量子比特的近似分解,电路深度为 OðlogðnÞ3logð1=ϵÞÞ,以及一种具有可调深度电路的精确分解,该电路的深度随着可用辅助量子比特的数量 m ≤ n 而减少,即 Oðlogðn=bm=2cÞ3+logðbm=2cÞÞ。由此产生的指数加速可能会对容错量子计算产生重大影响,因为它可以改善无数量子算法的复杂性,应用范围从量子化学到物理学、金融和量子机器学习。