用于光子量子比特的长持续时间量子存储器是实现长距离量子网络和中继器的重要组成部分。将光学状态映射到稀土集合中的相干自旋波上是一种特别有前途的量子存储方法。然而,由于所需的自旋波操纵引起的读出噪声,在量子水平上实现长时间存储仍然具有挑战性。在这项工作中,我们应用动态解耦技术和小磁场,在 151 Eu 3 +:Y 2 SiO 5 晶体中实现 20、50 和 100 毫秒的六种时间模式的存储,基于原子频率梳存储器,其中每个时间模式平均包含大约一个光子。通过存储两个时间箱量子比特 20 毫秒来验证存储器的量子相干性,平均存储器输出保真度为 F = (85 ± 2)%,每个量子比特的平均光子数为 μ in = 0.92 ± 0.04。量子比特分析是在存储器读出时完成的,使用我们开发的一种复合绝热读出脉冲。
扫描隧道显微镜 (STM) 能够在具有原子精度的表面上自下而上地制造定制的自旋系统。当将 STM 与电子自旋共振 (ESR) 相结合时,这些单个原子和分子自旋可以被量子相干地控制并用作电子自旋量子比特。在这里,我们通过沿两个不同方向采用相干控制来展示对表面上这种自旋量子比特的通用量子控制,这通过两个具有明确相位差的连续射频 (RF) 脉冲实现。我们首先展示量化轴上布洛赫矢量的每个笛卡尔分量的变换,然后进行 ESR-STM 检测。然后,我们展示了使用双轴控制方案生成单个自旋量子比特的任意叠加态的能力,其中实验数据与模拟结果高度一致。最后,我们介绍了动态解耦中双轴控制的实现。我们的工作扩展了基于 STM 的脉冲 ESR 的范围,突出了该技术在表面电子自旋量子比特的量子门操作中的潜力。
我们推导出混合量子比特-量子三体轴对称 (AS) 状态的局部量子不确定性 (LQU) 和局部量子 Fisher 信息 (LQFI) 的紧凑闭式形式。这使我们能够详细研究量子关联,并为自旋 (1/2, 1) 系统提供一些本质上新颖的结果,该系统的哈密顿量包含十种独立的物理重要参数。作为推导公式的应用,我们研究了这两个量子关联度量在热平衡下的行为。在它们的行为中观察到了对量子信息处理很重要的新特征。具体而言,在温度或相互作用参数平稳变化的情况下,LQU 和 LQFI 的行为会出现一系列突然变化。有趣的是,在某些情况下,在 LQU 的行为中观察到突然转变,但在 LQFI 中没有观察到,反之亦然。此外,我们的紧凑公式为将它们应用于其他问题开辟了一条道路,例如,在研究环境对开放系统中量子关联的影响时。
工业半导体制造已经能够生产具有数十亿至数万亿个晶体管的传统处理器。有趣的是,半导体量子点器件中的量子比特与经典晶体管结构有许多相似之处。利用工业制造技术生产大规模半导体自旋量子比特处理器使半导体量子比特平台成为实现通用量子计算最有希望的候选平台之一。
从更基本的量子引力理论中产生局部有效理论,该理论似乎具有更少的自由度,这是理论物理学的一个主要难题。解决该问题的最新方法是考虑与这些理论相关的希尔伯特空间映射的一般特征。在这项工作中,我们从这种非等距映射构建了近似局部可观测量或重叠量子比特。我们表明,有效理论中的局部过程可以用具有更少自由度的量子系统来欺骗,与实际局部性的偏差可以识别为量子引力的特征。举一个具体的例子,我们构建了两个德西特时空的张量网络模型,展示了指数扩展和局部物理如何在崩溃之前被欺骗很长一段时间。我们的结果强调了重叠量子比特、希尔伯特空间维度验证、黑洞中的自由度计数、全息术和量子引力中的近似局部性之间的联系。
十年后,当时就职于贝尔实验室的美国数学家彼得·肖尔 (Peter Shor) 设计出了最早的量子算法之一。对于传统(非量子)计算机来说,将两个数字相乘很容易,但执行逆运算(将数字分解为因数)却非常困难。事实上,随着数字越来越大,这个问题很快就会变得难以解决。这个问题非常困难,以至于现代数据加密利用了这种难解性来保护我们的信息。不幸的是,肖尔利用量子力学的特性发现了一种量子算法,可以大大加快这个逆问题的求解速度。一旦我们制造出足够强大的量子计算机来运行它,这一发现就会使当今的数据安全面临风险。
伊本托法伊尔大学,摩洛哥盖尼特拉,电子邮件:zemate.achraf@gmail.com 8 材料物理和亚原子实验室,物理系,伊本托法伊尔大学理学院,摩洛哥盖尼特拉,电子邮件:sedramyb@gmail.com 摘要:目的:这项工作旨在了解纳米技术在增强量子计算方面的相关性,重点关注该领域工作人员的看法。该研究将通过详细阐述本研究参与者的专业领域、他们在该领域的经验以及他们对量子比特或量子比特的认识来检查这些感知因素的识别,以提供未来相关研究和开发的指导。目的:本研究的目标如下:首先是评估纳米技术在量子计算中的现状;其次,确定影响该概念专业意义的因素;第三,发现文献中的缺陷。本研究还旨在就如何改善这一新兴领域的人际和跨专业合作与研究提供建议。方法:因此,采用了横断面调查设计,参与者包括纳米技术、量子计算和相关领域的专家。调查中提出的问题涉及受访者的经验、他们对纳米技术作用的看法以及他们的背景。使用卡方检验、方差分析、T 检验、相关性分析和回归分析对本研究收集的数据进行分析,以检查变量之间的关系并确定测试中的拟合优度。调查样本包括 210 名参与者,因此为评估提供了相当大的可靠性。
未来量子互联网技术面临的一个关键挑战是连接大都市规模的量子处理器。本文,我们报告了相隔 10 公里的两个独立运行的量子网络节点之间的预示纠缠。两个承载金刚石自旋量子比特的节点通过部署的 25 公里光纤与中点站相连。我们通过将量子比特原生光子量子频率转换为电信 L 波段,并将链路嵌入可扩展的相位稳定架构中,从而使用抗损失的单击纠缠协议,将光纤光子损耗的影响降至最低。通过充分利用网络链路的全部预示能力以及长寿命量子比特的实时反馈逻辑,我们展示了在节点上传递预定义的纠缠态,而不管预示检测模式如何。我们的架构解决了关键的扩展挑战并与不同的量子比特系统兼容,为探索大都市规模的量子网络建立了一个通用平台。
Tristan 是一位国际知名的实验物理学家,因其在量子点阵列中相干传输和自旋操控方面的开创性研究而闻名。他在巴黎高等师范学院 (ENS) 的卡斯特勒布罗塞尔实验室 (LKB) 获得博士学位,师从诺贝尔奖获得者 Serge Haroche,随后在代尔夫特理工大学获得博士后奖学金,该大学是自旋量子比特实验研究的先驱中心。在加入 Quobly 担任全职 CTO 之前,Tristan 还曾领导法国国家科学研究中心 (CNRS) 格勒诺布尔的量子自旋量子比特社区。
超导码头:从基本到应用到一般范围:在过去的十年中,已经证明,约瑟夫森量子电路的超导构成理想的块,以实现量子机械实验并构建有前途的量子位,以进行量子信息处理。这些电路显示为人造原子,其特性是由电子化合物(电容,电感,隧道屏障)固定的。最近我们展示了一种新的量子测量[1],它克服了通常的局限性(见图)。我们建议研究其开放量子系统的物理特性,例如量子 - 非解析测量,量子轨迹,同时测量,并基于此新的读数以及我们最近在量子上有限的放大器上的成就[2]。