借助测量的量子纠缠提供了多种途径来向网络中的各方传达信息。在这项工作中,我们概括了以前的广播协议,并提出了广播乘积和多部分纠缠量子态的方案,在后一种情况下,发送者可以远程添加相位门或中止分发状态。我们首先关注网络中乘积量子态的广播,并将基本协议概括为包括任意基础旋转并允许多个接收器和发送者。我们展示了如何在网络中添加和删除发送者。概括还包括这样一种情况,即事先不知道要应用于广播状态的相位,但会将其提供给以另一种量子态编码的发送者。广播乘积状态的应用包括身份验证和三态量子密码学。在第二部分中,我们研究了在与多量子位相位门纠缠的多个接收器之间共享的单个多量子位状态的分布,其中包括图状态作为示例。我们表明,通过与发送者协调,接收者可以仅使用 Pauli X 基础测量来协助执行基于远程分布式测量的量子计算。作为此的另一个应用,我们讨论了多量子比特 Greenberger-Horne-Zeilinger 状态的分布。
获得了局部酉变换下酉量子比特信道的标准形式。具体而言,证明了酉量子信道的 Choi 矩阵的特征值形成标准形式的一组完整的不变量。由此立即可知,每个酉量子比特信道都是四个酉信道的平均值。更一般地,只要 2(p 1 , . . . , pm ) 由信道 Choi 矩阵的特征值向量优化,酉量子比特信道就可以表示为具有凸系数 p 1 , . . . , pm 的酉信道的凸组合。标准形式的酉量子比特信道会将 Bloch 球面变换到椭圆体上。我们研究了将 Bloch 球面发送到相应椭圆体的自然线性映射的详细结构。
摘要:光生自旋关联自由基对固有的自旋极化使其成为量子计算和量子传感应用的有希望的候选者。可以使用电子顺磁共振波谱仪通过微波脉冲探测和操纵这些系统的自旋态。然而,到目前为止,还没有关于基于磁共振的量子点上光生自旋关联自由基对自旋测量的报道。在当前的工作中,我们制备了染料分子 - 无机量子点共轭物,并表明它们可以产生光生自旋极化态。选择染料分子 D131 是因为它能够进行有效的电荷分离,而选择纳米粒子材料 ZnO 量子点是因为它们有希望的自旋特性。对 ZnO 量子点 - D131 共轭物进行的瞬态和稳态光谱表明正在发生可逆的光生电荷分离。然后对光生自由基对进行瞬态和脉冲电子顺磁共振实验,结果表明:1)自由基对在中等温度下极化,现有理论可以很好地模拟;2)自旋状态可以通过微波脉冲获取和操控。这项工作为一种新型有前途的量子比特材料打开了大门,这种材料可以在极化状态下光生,并由高度可定制的无机纳米粒子承载。
潘宁阱已用于对数百个离子进行量子模拟和传感,并提供了一种扩大捕获离子量子平台的有希望的途径,因为它能够在二维和三维晶体中捕获和控制数百或数千个离子。在潘宁阱和更常见的射频保罗阱中,激光通常用于驱动多量子比特纠缠操作。这些操作中退相干的主要来源是非共振自发辐射。虽然许多捕获离子量子计算机或模拟器使用时钟量子比特,但其他系统(尤其是具有高磁场的系统,如潘宁阱)依赖于塞曼量子比特,这需要对这种退相干进行更复杂的计算。因此,我们从理论上研究了自发辐射对在高磁场中使用捕获离子基态塞曼量子比特执行的量子门的影响。具体来说,我们考虑了两种类型的门——光移位( ˆ σ zi ˆ σ zj )门和 Mølmer-Sørensen( ˆ σ xi ˆ σ xj )门——它们的激光束近似垂直于磁场(量化轴),并比较了每种门中的退相干误差。在每种门类型中,我们还比较了与驱动门所用的激光束的失谐、偏振和所需强度有关的不同工作点。我们表明,这两种门在高磁场下的最佳工作条件下都能具有相似的性能,并研究了各种工作点的实验可行性。通过检查每个门的磁场依赖性,我们证明,当 P 态精细结构分裂与塞曼分裂相比较大时,Mølmer-Sørensen 门的理论性能明显优于光移门。此外,对于光移门,我们对高场下可实现的保真度与最先进的双量子比特离子阱量子门的保真度进行了近似比较。我们表明,就自发辐射而言,我们当前配置可实现的保真度比最好的低场门大约高一个数量级,但我们也讨论了几种替代配置,其潜在错误率与最先进的离子阱门相当。
有关最佳信息传输方法的研究对于量子通信至关重要。增强可靠传输信息量的一种方法是减少噪声的影响。在专门针对此任务量身定制的方法中是错误校正,缓解错误和抑制错误技术[1,2]。校正代码允许通过将信息编码为大量物理量表来降低逻辑门的错误率。Mitiga的技术不需要传输冗余信息,而需要显着增加的测量数量。最后,错误抑制使用有关系统的知识来避免不良影响的潜在影响。又是解决有害噪声问题的另一种方法是将这种噪声用作量子资源[3-6],因此接受错误的存在并试图从中受益,而不是反对其影响。已经表明,这种方式可以增强测量信道传输特性的数量,例如保真度,熵或容量[4-6]。量子通道特性的完整表征通常是非常具有挑战性的。为了使问题更容易解决,可以引入其他对称性,例如通道的协方差属性。按定义,量子通道λ相对于统一表示u,v的u,v(或紧凑)G组的协方差,如果
摘要本文通过一个具有真实数据集的明确示例,对量子机器学习 (QML) 领域进行了实践介绍。我们重点关注使用数据重新上传技术的单个量子位学习的情况。在讨论了量子计算和机器学习的相关背景之后,我们对我们考虑的数据重新上传模型进行了详尽的解释,并使用 qiskit 量子计算 SDK 在玩具和真实世界数据集中实现了不同的提议公式。我们发现,与经典神经网络一样,层数是决定模型最终准确性的因素。此外,有趣的是,结果表明,在同一组训练条件下,单量子位分类器可以实现与经典分类器相当的性能。虽然这不能理解为量子机器学习优势的证明,但它指出了一个有前途的研究方向,并提出了我们概述的一系列问题。
量子隐形传态在量子通信领域有着重要的应用。本文研究了以GHZ态和非标准W态为量子信道在噪声环境中的量子隐形传态。通过解析求解Lindblad形式的主方程分析了量子隐形传态的效率。遵循量子隐形传态协议,得到了量子隐形传态保真度随演化时间的变化关系。计算结果表明,在相同的演化时间下,非标准W态的隐形传态保真度高于GHZ态。此外,我们考虑了在振幅衰减噪声条件下,采用弱测量和逆量子测量的隐形传态效率。我们的分析表明,在相同条件下,采用非标准W态的隐形传态保真度也比GHZ态更能抵御噪声。有趣的是,我们发现在振幅衰减噪声环境下,弱测量及其逆操作对GHZ和非标准W态的量子隐形传态效率没有积极影响。此外,我们还证明,通过对协议进行微小修改,可以提高量子隐形传态的效率。
b"摘要:Dicke 态是具有汉明权重 k 的 n 个量子比特的叠加,表示为 | D nk \xe2\x9f\xa9 。Dicke 态经常用于为量子搜索算法(例如,Grover 搜索和量子行走)准备输入叠加,这些算法解决具有一定数量 nk 个候选解的组合问题。B\xc2\xa8artschi 和 Eidenbenz 提出了一种具体的量子电路,用于使用多项式量子门构造 Dicke 态 | D nk \xe2\x9f\xa9,并且他们根据汉明权重 k 对该电路进行了推广,以准备 Dicke 态的叠加。随后,Esser 等人提出了另一种量子电路,用于使用多项式门和一些辅助量子比特生成 Dicke 态 | D nk \xe2\x9f\xa9。在本文中,我们推广了 Esser 的状态准备电路以构造一个Dicke 态的叠加。我们对两个广义 Dicke 态准备电路进行了具体的比较。我们使用来自 IBM 量子体验服务 (IBMQ) 的真实量子机器进行噪声模拟和实验。这两个电路都使用噪声中尺度量子 (NISQ) 设备成功构建了广义 Dicke 态叠加,尽管受到噪声的影响。”
涉及多级纠缠的量子网络允许在量子通信,量子传感和分布式量子计算中进行令人兴奋的应用。通过光通道非本地纠缠产生的效率随着网络节点之间的距离而呈指数下降。我们提出了一种平行且预示的协议,用于在多个节点上生成分布式多Qualbit纠缠。这是通过使用高维单光子来实现的,该光子用作连接所有固定量子位(即硅胶合电子旋转)的普通数据总线,每个量子都与单面光腔耦合。平行的多等级纠缠状态与单个光子与每个固定值相互作用并通过每个光子调制电路的检测预示着它。此并行协议可以显着提高分布式纠缠生成的效率,并为分布式多端量子网络提供可行的途径。
混合超导体 - 触发器设备为固态量子信息处理提供了独特的优势。特别是,自十年前的成立以来,Gatemon Qubit已被证明是一个多功能的实验平台。对于所有类型的Qubits,理解和克服的破坏性是向大规模量子计算进展的重要部分。在本论文中,提出了与GATEMON中的分层有关的三个不同的研究。首先,在有限的磁场中研究了在Inas纳米线中形成的带有完全覆盖的壳的gatemon。在应用领域中调查该系统的是可能存在Majorana零模式的可能性,该模式可用于防止逆转。观察到量子转换频率对磁场的非单调依赖性被观察并解释为破坏性的小公园效应。没有观察到有限的主要耦合(E M)的特征。通过测量值的电荷分散体,将上限放置在E m / h <10mHz时。接下来,研究了纳米诺威氏菌在纳米线gatemon中诱导的奇偶校验切换。准颗粒中毒会导致逆转状态,并且是超导Qubits损失的重要来源。在零磁场时,发现切换在100 ms的时间尺度上发生。随着温度或磁场的增加,切换速率被观察到第一个常数,然后呈指数增加,这与共存非平衡和热准粒子的常规图片一致。在零磁场上缓慢的平价切换对于gatemon连贯时间的未来发展有希望。最后,提出了对基于2DEG的盖特尼人的早期结果,其多个大门接近约瑟夫森交界处。