2025年1月6日,农药计划办公室案例环境保护局案例中心(EPA/DC),(28221T)1200宾夕法尼亚州大街。NW华盛顿州华盛顿特区20460-0001 RE:EPA修订的拟议的拟议的FOLPET临时注册审查决定; DiCKET ID:EPA-HQ-OPP-2012-0859国家农业航空协会(NAAA)感谢有机会对EPA修订的拟议拟议的临时注册审查审查决定对FOLPET的注册审查的决定。美国航空应用行业背景:NAAA代表了1,560个航空应用行业所有者/运营商和2,028名非经营者农业飞行员的利益,该飞行员在美国的整个美国授权使用飞机,这些飞机使用飞机来增强食品,纤维,纤维,纤维,生物和生物富度的生产;保护林业;保护水道和牧场免受入侵物种;并为机构和房主团体提供服务,以控制蚊子和其他威胁健康的害虫。在农业和其他有害生物控制的情况下,载人的空中应用是应用农药的重要方法,因为它允许大面积迅速覆盖,这是最重要的作物输入的最快应用方法。它比其他任何形式的应用都更加利用了通常的可接受天气时期,以供喷洒,并允许在害虫处处于关键的发育阶段时及时处理它们,通常在地形上过于湿润或无法在地面应用中无法访问。它还在农作冠层上方处理,因此不会破坏作物并破坏作物。除了速度和及时优势的航空应用超过航空应用具有更高的生产率,准确性,速度,并且对农作物的生产率不大。尽管平均航空应用公司只有六名员工和两架飞机,但作为一个行业,这些小型企业每个季节都会处理近1.27亿英亩的美国农田,约占美国用于农作物生产的所有农田的28%除了耕地英亩外,航空施用者每年还适用于510万英亩的林地,790万英亩的牧场和牧场,以及480万英亩的蚊子控制和其他公共卫生问题。虽然可以替代对农药的空中应用,但空中应用具有多个优势。
气候风险是参与农业的每个人的财务风险,包括农民,食品公司,金融机构和投资者。由于我们的食品系统取决于自然和生态系统的多少,气候变化对整个行业构成了巨大的威胁和成本。农民面临着更严重和不稳定的天气模式和长期条件,例如归因于气候变化的严重干旱,这可能导致生产率降低,利润和资产价值。在2023年,与天气有关的灾难造成了219亿美元的农作物和牧场损失。到2030年,全球最大的牲畜生产商的盈利能力可能会因为气候变化的直接影响而下降,北美公司遭受了最大的影响,利润率平均下降了11%。与此同时,食品和农业公司面临与监管变化相关的市场过渡和业务风险,以及从越来越期望有更多环境责任和寻求决策信息的投资者的消费者转移偏好,以便他们可以考虑所有投资风险和机会。政府,金融机构和公司正在采取行动解决这些风险。2023年,标准普尔500指数的近100%和罗素1000家公司的93%自愿发布了公司责任报告。许多在欧洲运营的公司,但美国农场和牧场的来源将开始遵守2025年欧盟公司可持续发展报告指令(CSRD)下的报告要求。据估计,到2029年,有50,000家欧盟和10,400家非欧盟公司将属于其范围。三十个国家的尝试占全球GDP的57%,预计将通过采用国际可持续性标准委员会(ISSB)标准,在2025年之前推出类似的披露标准。除了欧盟外,包括英国,日本,巴西,香港和澳大利亚在内的许多主要金融市场还要求以不同形式与气候相关的金融披露。银行正在密切关注气候风险,并将其计算在其最新的风险中。农场信贷系统的年轻,起点和小型农民计划以及美国农业部(USDA)农场服务机构的保护贷款计划提供了贷方扩大或调整其贷款产品以建立农场弹性的示例。
本书共 12 章,由 13 位航空、航空学、控制和信息系统以及工程领域的顶级专家撰写。本书的编辑是堪萨斯州立大学和新墨西哥州立大学航空和无人机系统研究的教授。在高度动态和不断发展的 UAS 行业中,本书旨在确定和调查 UAS 操作的基本原理,因此,它可以作为 UAS 大学入门课程的教科书。本书从非工程民用操作角度编写,从 UAS 的历史开始,继续介绍当前的技术以及未来的发展。它涵盖了 UAS 元素和操作的所有方面,以及安全程序和人为因素,让读者对安全操作 UAS 所需的条件有一个实际的了解。第 1 章“历史”详细介绍了 UAS 的历史,特别是从军事应用的角度。第 2 章“无人机系统要素”介绍了 UAS 要素:指挥和控制、通信、有效载荷、发射、人员要素。目的是快速向读者介绍 UAS 使用的操作问题。第 3 章“美国航空监管体系”重点关注一个热点问题,这对于行业有序发展至关重要。它详细描述了美国和其他国家现有的航空监管体系
Abreu,R。C.,Hoffmann,W。A.,Vasconcelos,H。L.,Pilon,N。A.,Rossatto,D。R.和Durigan,G。(2017)。 热带稀树草原中碳质量的生物多样性成本。 科学进步,3(8),E1701284。 https://doi.org/10.1126/sciadv.1701284 Adams,M。A. (2013)。 巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。 森林生态与管理,294,250–261。 Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O. (2006)。 土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。 全球生物地球化学周期,20(3)。 https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S. 木质植物侵占:原因和后果。 在D. D. Briske中(编辑 ),牧场系统:过程,管理和挑战(pp。 25–84)。 Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Abreu,R。C.,Hoffmann,W。A.,Vasconcelos,H。L.,Pilon,N。A.,Rossatto,D。R.和Durigan,G。(2017)。热带稀树草原中碳质量的生物多样性成本。科学进步,3(8),E1701284。https://doi.org/10.1126/sciadv.1701284 Adams,M。A. (2013)。 巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。 森林生态与管理,294,250–261。 Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O. (2006)。 土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。 全球生物地球化学周期,20(3)。 https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S. 木质植物侵占:原因和后果。 在D. D. Briske中(编辑 ),牧场系统:过程,管理和挑战(pp。 25–84)。 Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。https://doi.org/10.1126/sciadv.1701284 Adams,M。A.(2013)。巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。森林生态与管理,294,250–261。Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O.(2006)。土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。全球生物地球化学周期,20(3)。https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S.木质植物侵占:原因和后果。在D. D. Briske中(编辑),牧场系统:过程,管理和挑战(pp。25–84)。Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Springer。Balesdent,J.,Girardin,C。和Mariotti,A。(1993)。在温带森林中与地点相关的13 c树叶和土壤有机物。生态学,74(6),1713–1721。Balesdent,J。和Mariotti,A。(1996)。使用13°C的自然丰度测量土壤有机化的周转。在I. T. W. Boutton和S. I. Yamasaki(编辑),土壤的质谱法(pp。83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。83–111)。Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J.(1986)。Koedoe,29(1),39-44。摘要克鲁格国家公园的前寒武纪花岗岩岩石。https://doi.org/10.4102/koedoe.v29i1.518 Bastin,J.-F.,Finegold,Y.,Garcia,C.,Mollicone,D.,Rezende,Rezende,M.,Routh,M.全球树的重新修复潜力。Science,365(6448),76-79。Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2015)。 使用LME4拟合线性混合效应模型。 统计软件杂志,67(1),1-48。 Biggs,R.,Biggs,H。C.,Dunne,T。T.,Govender,N。和Potgieter,A。L. F.(2003)。 在克鲁格国家公园(Kruger National Park)中的实验烧伤图试验:历史,实验设计和数据分析的建议。 Koedoe,46(1),1-15。 Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。 火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。 Geoderma,94(1),71–90。 Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。 木质侵占减少了养分限制并促进土壤碳螯合。 生态与进化,4(8),1423–1438。Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2015)。使用LME4拟合线性混合效应模型。统计软件杂志,67(1),1-48。Biggs,R.,Biggs,H。C.,Dunne,T。T.,Govender,N。和Potgieter,A。L. F.(2003)。在克鲁格国家公园(Kruger National Park)中的实验烧伤图试验:历史,实验设计和数据分析的建议。Koedoe,46(1),1-15。Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。 火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。 Geoderma,94(1),71–90。 Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。 木质侵占减少了养分限制并促进土壤碳螯合。 生态与进化,4(8),1423–1438。Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。Geoderma,94(1),71–90。Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。木质侵占减少了养分限制并促进土壤碳螯合。生态与进化,4(8),1423–1438。
专业经验 IVM Partners, Inc.(综合植被管理合作伙伴)总裁 2003 年至今 IVM Partners, Inc. 是一家 501-C-3 非营利性公司,致力于开发、教育专业人员和公众并应用综合植被管理实践,以提供安全、可靠和方便的公用事业和公路通行权 (ROW),改善野生动物和濒危物种栖息地,控制外来杂草,降低野火风险。我们发展行业和政府之间的合作伙伴关系,以便采用最佳实践以安全、经济和对环境负责的方式解决军事设施、社区、森林、公园、高尔夫球场和野生动物保护区的植被管理问题;并与大学和保护组织合作,就植被管理实践中的区域地理生理差异进行研究和传播信息。 2025 通过 Blackwater NWR 与 USFWS 和马里兰州自然资源部区域建立合作伙伴关系并监测 Choptank Electric Cooperative ROW 的 IVM 栖息地恢复。 2025 为弗吉尼亚州 Apex 清洁能源公司的 Riverstone 太阳能项目开发 IVM 生态系统恢复案例研究。 2024 正在为北卡罗来纳州 Apex 清洁能源公司的 Timbermill 风能项目开发 IVM 生态系统恢复案例研究。 2023 正在马里兰州埃尔克顿 Patriots Glen 高尔夫球场开发 IVM 案例研究,以监测湿地和高地栖息地中本地植物的栖息地恢复情况。 2023 正在北卡罗来纳州开发 Piedmont Natural Gas (Duke Energy) ROW 的 IVM 案例研究,以监测从年度割草到 IVM 的栖息地变化过渡。 2023 正在与 Envu 建立业务合作伙伴关系,以开发 IVM 案例研究和传粉者地价指数 (PSVI) 指标,以确定恢复的栖息地效益。 2022 开发马里兰州公用事业和高速公路 ROW、高尔夫球场和农业的案例研究,以便根据 ANSI A-300 第 7 部分-IVM 进行 IVM 最佳实践的实地参观教育。 2022 开发 IVM 项目并指导俄克拉荷马州 Energy Transfer 天然气草原栖息地恢复的生态系统研究。2022 开发 IVM 项目并指导 TC Energy 和 WSSI 的生态系统研究,与西弗吉尼亚州自然资源部合作,研究通过西弗吉尼亚州杰克逊堡附近的 Lewis Wetzel 野生动物管理区的页岩气输送 ROW。2021 与拜耳和科罗拉多州弗吉尼亚戴尔附近的沃尔堡加修道院合作开展雀麦草控制和牧场恢复研究。2020 年与拜耳和克莱姆森大学合作,在南卡罗来纳州开展关于 Dominion Energy 电力 ROW 的 IVM 案例研究。2019 与先正达公司持续开展业务合作,开发 IVM 案例研究和传粉媒介站点价值指数 (PSVI) 指标,以确定恢复的栖息地效益 2018 为路易斯安那州交通部和安特吉公司提供有关州际公路 ROW 沿线新电力传输清理的建议,以恢复本地早期演替植物群落。 2018 持续协助特拉华州和马里兰州农业部采用 IVM 最佳实践,恢复农田和税沟周围 CRP 土地沿线的本地传粉媒介和鸟类栖息地,并减少切萨皮克湾和沿海海湾的径流和泥沙沉积。
