夜间可视化需要使用孔径为 20 至 30 厘米的望远镜。由于直径为 20 厘米的空间碎片激光组件的出口孔径符合与孔径相关的规格,因此可以使用安装在空间碎片激光组件中的卫星摄像机进行夜间引导。对于具有比卫星摄像机的 FOV(视场)更大的角度偏移的目标的可视化,可以使用 Stare & Chase 望远镜。即使是夜间可以使用空间碎片激光系统测距的最小物体,也可以在两个摄像机中可视化。假设反射率为 20%,距离 600 公里的直径为 10 厘米的球形物体的亮度将为 11 mag。距离 1400 公里的直径为 50 厘米的球形物体将具有类似的亮度。对于最暗的物体,积分时间必须增加到几十分之一秒。
由于室内环境中存在许多反射,基于 RSSI 的测距本质上是不准确的。通过结合基于相位的距离估计协议和先进的信号处理,imec 测距技术可以准确地将视线分量与多径分离。结果是一个具有亚米级精度的强大测距系统。与测向(也称为 AoA,到达角)不同,imec 距离测量仅使用两侧的单个天线进行。通过将多个天线与跟踪相结合,距离测量的精度甚至可以远远优于 10 厘米。它还可以与 AoA 技术相结合,为此,imec 的多径消除技术也提供了卓越的性能。
在自由行动或野生动物中对传染病的监测已在COVID-19发作之后在许多栖息地国家进行了广泛进行。泰国位于长尾猕猴(Macaca fascicularis; MF)的分布范围的中心,其中动物既经常人类接触,又有人类结核病的高患病率。用于大规模检测结核分枝杆菌复合物(MTBC)的使用为6110-MF中的pcr,使用口服(通过绳索诱饵)和粪便(直接擦拭新鲜粪便)收集标本。首先,MTBC-IS 6110被限制的PCR在非侵入性收集的标本中得到了验证,其特异性和陈述性,然后与24个圈养的MTBC诱发的MTBC诱导的MF中的口腔和直肠拭子相比。验证后,将这些方法应用于在先前报道的MTBC感染人群中的四个棚屋MTBC(MTBC)患病率的调查。总共收集了173个诱饵绳标本和204个新鲜排定的排泄物。IS 6110 -PCR技术的检测极限为10 fg/μL,181 bp PCR扩增子与MTB H37RV基因组序列显示100%序列相似性。在被俘虏的可疑MF中的侵入性和非侵入性收集的标本之间检测揭示了两种类型的口服样本之间存在显着相关性(口腔拭子和诱饵的绳索; n = 24,r 2 = 1,r 2 = 1,p-value <0.001),但较高的新鲜伪造群体比MTCRES shand Swabs shews swabs。揭示了两种类型的口服样本之间存在显着相关性(口腔拭子和诱饵的绳索; n = 24,r 2 = 1,r 2 = 1,p-value <0.001),但较高的新鲜伪造群体比MTCRES shand Swabs shews swabs。此外,在新鲜的粪便中,MTBCS阳性自由放大的MF的比例明显高于诱饵绳(5.20%; 95%CI; 95%; 95%; 95%; 4.9-12.7%)的比例。该结果表明,通过诱饵绳索和粪便采样通过排除排泄物拭子可以用作自由态非人类灵长类动物中MTBCS检测的辅助标本。
激光还有一种不太为人所知的应用是卫星激光测距。在本月的专栏中,来自马里兰州格林贝尔特 NASA 戈达德太空飞行中心 (GSFC) 陆地物理实验室 (LTP) 的 John Degnan 和 Erri cos Pavlis 向我们介绍了卫星激光测距,并描述了利用该技术追踪两颗 Navstar GPS 卫星的努力。Degnan 博士是 LTP 的空间大地测量和测高项目办公室负责人。他自 1964 年起就受雇于 GSFC,当时作为德雷塞尔大学的实习生,他参加了对 Beacon Explorer B 卫星的首次激光测距实验。Pavlis 博士是 LTP 的高级大地测量学家,隶属于马里兰大学天文系。他的研究兴趣包括卫星轨道动力学和空间大地测量数据分析。
量子信息理论为任何信息处理任务设置了最终限制。在发现和激光雷达中,可以通过检测接收器的不同状态来测试目标的存在或不存在。在这封信中,我们使用量子假设测试对未知的相干返回信号,以得出单发范围实验的对称和非对称误差概率的限制。我们设计了一个独立于该范围的单个测量值,在某些情况下,量子结合,而对于其他范围则是接近它的最佳测量。这项工作弥合了量子信息与量子传感和工程之间的差距,并将有助于设计更好的传感器,并为确定其他量子任务的实用限制树立途径。
在电子工程的工业和研究领域,距离信息被视为关键测量之一 [1]。为了获得准确可靠的距离数据,具有测距能力的设备现在广泛应用于军事和工业领域,包括红外 (IR) 和超声波测距仪。然而,使用这些传统的测距系统会出现许多准确性问题,因为它们对周围环境非常敏感,特别是当暴露于非结构化和不可预测的物理环境(灰尘、温度、烟雾)或结构混乱的环境(瓦砾、碎片等)时 [2]。因此,提出了一种更可靠的测距方法。激光二极管发射高度定向的光束,具有体积小、亮度高、颜色纯、能量密度高和效率高的优点 [3][4]。最重要的是,激光测距系统不易受到环境影响,因为可以通过测量反射和散射回波信号的时间间隔、频率变化和光束方向来获得目标的距离和方向。使用激光测距方法的测量误差仅为其他光学测距仪的五分之一到百分之一 [5]。相位激光测距法因其高精度而受到广泛欢迎,然而其应用问题也不容忽视,观测到在频率漂移、噪声、大气折射等影响下,可能由于相位折叠或相位模糊而出现接近零步进误差[6]。Barreto 等人采用了三角测量激光测距法,但其灵敏度要求严格且功耗高[7]。本文研制了一种微型、便携、低功耗的激光测距系统,具有两种测量模式:高精度模式和长距离模式。本文研制了一种微型便携式激光测距系统,具有两种测量模式:高精度模式和长距离模式。该系统基于 VL53L0X 飞行时间激光测距传感器和 STM32F407 微控制器 [8]。
§ D. Hampf,“SpaceWatchGL 观点:黑暗海洋中的一盏明灯:为什么所有太空物体都应该有反射器”,https://spacewatch.global/2022/07/spacewatchgl-opinion-a-beacon-of-light-in-the-sea-of-darkness-why-all- space-objects-should-have-retroreflectors/