切割平面(切割)在解决混合整数线性程序(MILP)方面起着重要作用,因为它们可以显着拧紧双重界限并改善解决性能。削减的关键问题是何时停止削减生成,这对于解决MILP的效率很重要。但是,许多现代的MILP求解器采用了硬编码的启发式方法来解决这个问题,这往往会忽略MILPS中基本的作用,而不是某些应用。为了应对这一挑战,我们制定了削减生成,以阻止概率作为增强学习问题,并提出了一种新颖的新生graph g raph raph raph raph raph m o del(Hygro),以学习有效的停止策略。Hygro的一个吸引人的特征是,它可以有效地捕获MILP的动态和静态功能,从而为停止策略提供动态决策。据我们所知,Hygro是第一个解决削减生成停止问题的数据驱动方法。通过将我们的方法与现代求解器相结合,实验表明,与柔软的基线相比,透明质可能可显着提高解决MILP的效率,从而提高31%。
信用卡欺诈对经济构成重大威胁。虽然图神经网络(GNN) - 基于基于的欺诈检测方法表现良好,但它们经常忽略节点局部结构对预测的因果影响。本文介绍了一种新颖的信用卡欺诈检测方法,即ca usal t emporal g raph n eural n etwork(cat-gnn),该方法利用了因果不变的学习来揭示事务数据中的固有相关性。通过将问题分解为发现和干预阶段,CAT-GNN可以识别事务图中的因果节点,并应用因果混合策略来增强模型的效果和解释性。cat-gnn由两个关键组成部分组成:因果检查员和因果关系。因果检查员利用时间注意机制中的调整权重识别因果和环境节点而无需引入其他参数。随后,因果关系基于一组节点对环境节点进行因果混合性。在三个数据集上进行了评估,包括一个私人财务数据集和两个公共数据集,CAT-GNN表现出优于现有最新方法的卓越性能。我们的发现突出了将因果原因与图形神经网络相结合以提高金融交易中欺诈检测能力的潜力。
关于方面情感策略(ALSC)的先前研究强调了建模方面和环境之间的相互关系,但忽略了方面本身作为基本领域知识的关键作用。为此,我们提出了AGCL,这是一种新颖的A Spect G Raph C Onstruction和L Charning方法,旨在为模型提供精心调整的方面信息,以增强其任务认可能力。agcl的关键创新位于方面图构造(AGC)和方面图(AGL)中,其中AGC可以利用内在的方面连接来构建DO-MAINTEAK图形,然后AGL迭代地更新引入的方面图以增强其领域的专业知识,从而使其更适合ALSC任务。因此,此域As-pect图可以用作连接未见方面与可见方面的桥梁,从而增强了模型的概括能力。的三个广泛使用数据集的结果证明了方面信息对ALSC的重要性,并突出了AGL在方面学习中的优越性,超过了最新的基线。代码可从https://github.com/jian-projects/agcl获得。
致谢 本研究由美国能源部 (DOE) 的国家可再生能源实验室根据合同编号 DE-AC36-08GO28308 完成,该实验室由可持续能源联盟有限责任公司运营。我们感谢能源部政策办公室和能源效率与可再生能源办公室的资金支持,以及能源部地热技术办公室对本研究中使用的地热建模能力的支持。我们特别感谢能源部研究团队的核心成员 (Keith Benes、Angela Guiliani、Kendra Kostek、Kelsey Landau、Davie Nguyen 和 Raph Tisch) 在整个研究过程中以及对本报告的审查中给予的支持。我们还要感谢来自美国联邦合作部门和机构的众多个人 (见附录 A) 对这项合作研究的贡献。我们感谢 Jeremy Bluma (土地管理局);Erin Strasser 和 Thomas Wittig (美国鱼类和野生动物管理局);Stephanie Rice (空军); Sophie Godfrey-McKee、Joshua Hanson 和 Haninah Levine(白宫环境质量委员会);以及 Karen Anderson(白宫气候政策办公室)对本报告进行审查。
图神经网络(GNN)在广泛的应用领域中已显示出良好的效果。大多数 GNN 实证研究直接将观察到的图作为输入,假设观察到的结构完美地描述了节点之间准确和完整的关系。然而,现实世界中的图不可避免地是有噪声的或不完整的,这甚至会降低图表示的质量。在本文中,我们从信息论的角度提出了一种新的变分信息瓶颈引导的图结构学习框架,即 VIB-GSL。VIB-GSL 是首次尝试推进图结构学习的信息瓶颈 (IB) 原理,为挖掘底层任务相关关系提供了更优雅、更通用的框架。VIB-GSL 学习一种信息丰富且压缩的图结构,以提炼出特定下游任务的可操作信息。 VIB-GSL 对不规则图数据推导变分近似,形成易处理的 IB 目标函数,有利于提高训练稳定性。大量实验结果表明 VIB-GSL 具有良好的有效性和鲁棒性。
图神经网络(GNN)在广泛的应用领域中已显示出良好的效果。大多数 GNN 实证研究直接将观察到的图作为输入,假设观察到的结构完美地描述了节点之间准确和完整的关系。然而,现实世界中的图不可避免地是有噪声的或不完整的,这甚至会降低图表示的质量。在本文中,我们从信息论的角度提出了一种新的变分信息瓶颈引导的图结构学习框架,即 VIB-GSL。VIB-GSL 是首次尝试推进图结构学习的信息瓶颈 (IB) 原理,为挖掘底层任务相关关系提供了更优雅、更通用的框架。VIB-GSL 学习一种信息丰富且压缩的图结构,以提炼出特定下游任务的可操作信息。 VIB-GSL 对不规则图数据推导变分近似,形成易处理的 IB 目标函数,有利于提高训练稳定性。大量实验结果表明 VIB-GSL 具有良好的有效性和鲁棒性。
I. i ntroduction g raph标签具有许多类型的应用程序,包括信息安全性。在通信网络中,魔术标签具有多个应用程序。顶点,边缘和总标记是根据域确定的。遵守某些条件的图形标记会导致G.J. Gallian预测的巨大现实生活应用[3]。在1963年,魔术标签由sedl´aˇCek提供。Rosa和Kotzig定义了魔术标签,并在[1]中探索了一些结果。Ringel和Llado引入了Edge Magic Labeling,这是魔术标签的扩展之一,并在其工作中讨论了一些有趣的猜想结果。Edge-Magic总标签,由W. D. Wallis等开发。对一些特殊图形产生了相同的标签。W. D. Wallis增强了魔术图的想法。数据安全性是必须仔细处理以确保重要数据的主题,因为它提供了隐私,诚信,保密和身份验证。加密是保护数据的传统方法之一,通常被视为关键数据安全组件。在当前情况下,网络安全是一个综合主题,并且已经开发出了几种方法来确保对攻击的安全性。网络连接数百万个人,其目的是保护数据并确保及时交付到目的地。网络安全性确保机密性,完整性,访问控制和授权。
将大型语言模型(LLMS)与源自领域数据得出的知识图集成在一起,代表了对更强大和事实发展的重要进步。随着这些模型变得越来越有能力,至关重要的是要使它们能够通过实际知识图进行多步骤推断,同时最大程度地减少幻觉。虽然大型语言模型在对话和文本发电中表现出色,但它们在互连实体的域特殊图上推理的能力仍然有限。例如,我们可以根据私人数据库中的关系和属性查询LLM以确定专业网络中的最佳联系人吗?答案是否 - 这种可行性超出了当前方法。但是,这个问题强调了必须解决的重要技术差距。在科学,安全性和电子商务等领域的许多高价值应用都依赖于编码独特的结构,关系和逻辑共识的专有知识图。我们介绍了一个微调框架,用于开发与g raph一致的la nguage m odels(gl a m),该框架将知识图转换为具有la beled Question-Asswer Pairs的替代文本表示。我们证明,在基于图的特定知识中对模型进行基础,扩大了模型的基于结构的推理的能力。我们的方法论利用了大型模型的生成能力来创建数据集,并提出了一个有效的替代方法,以替代检索增强的生成样式方法。
尽管分子表示学习最近取得了进展,但其有效性还是在近世界的假设上假定的,即训练和测试图来自相同的分布。开放世界测试数据集通常与分布(OOD)样本混合在一起,在该样本中,部署的模型将难以做出准确的预测。在药物筛查或设计中分子特性的误导性估计会导致湿lab资源的大量浪费并延迟发现新疗法的发现。传统检测方法需要对OOD检测和分布(ID)分类性能进行贸易,因为它们共享相同的表示模型。在这项工作中,我们建议通过采用基于辅助扩散模型的框架来解析OOD分子,该框架比较了输入分子和重建图之间的相似性。由于产生构建ID训练样品的产生偏见,OOD分子的相似性得分将要低得多以促进检测。尽管在概念上很简单,但将此香草框架扩展到实际检测应用程序仍然受到两个重大挑战的限制。首先,基于欧几里得距离的流行相似性指标无法考虑复杂的图形结构。第二,涉及迭代脱氧步骤的属性模型众所周知,尤其是在大量药物库上运行时。为了应对这些挑战,我们的研究先驱者是一种旋转型G raph r生态建构的方法,该方法被称为pgr-mood。具体来说,PGR-MOOD取决于三个创新:i)一个有效的指标,可根据离散的边缘和连续节点特征全面量化输入和重建分子的匹配程度; ii)构建
通过优化模型的最坏情况性能,基于分布的强大优化(DRO)图形网络方法改善了建议系统的脱离(OOD)概括。但是,这些研究未能考虑嘈杂样本在训练数据中的影响,这导致概括能力降低和准确性降低。通过实验和理论分析,本文表明,当前基于DRO的图形建议方法为噪声分布分配了更大的权重,从而导致模型参数学习由其主导。当模型过于关注训练数据中的噪声样本时,它可能会学习无关紧要或含义的较小功能,这些功能无法推广到OOD数据。为了应对这一挑战,我们为O OD推荐(DRGO)设计了D iStribution Rubust G Raph模型。具体来说,我们的方法首先采用简单有效的扩散范式来减轻潜在空间中的嘈杂效应。此外,在DRO目标函数中引入了熵常规项,以避免在最坏情况下分布中的极端样品权重。最后,我们提供了DRGO的概括误差结合的理论证明,以及对我们的方法如何对嘈杂的样本效应的理论分析,这有助于从理论角度更好地理解所提出的框架。我们在四个数据集上进行了广泛的实验,以评估我们的框架的有效性,以针对三个典型的分布变化进行评估,结果证明了其在独立和相同分布分布(IID)和OOD中的优势。我们的代码可在https://anonymon.4open.science/r/drgo-fed2上找到。