我们提出了新方法,用于精确合成具有高成功概率和门保真度的单量子比特幺正,同时考虑了时间箱和频率箱编码。所提出的方案可通过光谱线性光学量子计算 (S-LOQC) 平台进行实验,该平台由电光相位调制器和相位可编程滤波器(脉冲整形器)组成。我们评估了两种编码中任意门生成的两种最简单的 3 组分配置的保真度和概率性能,并使用单音射频 (RF) 驱动 EOM,为时间箱编码中任意单量子比特幺正的合成提供了精确的解析解。我们进一步研究了使用紧凑实验装置在多个量子比特上并行化任意单量子比特门,包括光谱和时间编码。我们系统地评估和讨论了 RF 带宽(决定驱动调制器的音调数量)以及不同目标门的编码选择的影响。此外,我们还量化了在实际系统中驱动 RF 音调时,可以并行合成的高保真 Hadamard 门的数量,且所需资源最少且不断增加。我们的分析将光谱 S-LOQC 定位为一个有前途的平台,可进行大规模并行单量子位操作,并可能应用于量子计量和量子断层扫描。
大型孔径天线不仅可以为传统的通信服务和雷达提供帮助,还可以实现新的通信,遥感,深空探测和电力传输航天器的新方法。较高的天线孔可保证更高的信号分辨率和信噪比,而其精度则驱动其空间分辨率和灵敏度。在过去,开发高孔径天线是一项技术挑战,受到高刚度和重组件而针对发射限制的部署的限制,但最近在轨道上自主制造和组装方面的进步为直接在太空中直接开发的大型和光线结构的发展打开了大门。但是,如果许多文献中的许多作品都集中在空间中的大型天线制造上,那么[1]中的许多工程挑战,例如表面准确性,航天器稳定性和部署可靠性,仍然对这些技术的实际去风险施加限制。拟议的项目具有提出大型天线的欧洲端到端轨内组装方案的发展,并通过小规模的实验基准表明其关键技术挑战。通过利用团队中可用的技能建模和控制大型柔性结构[2,3]和天线技术[4,5],该项目将重点放在:
可调的涡流梁在各种领域具有相关性,包括通信和传感。在本文中,我们证明了具有二阶非线性敏感性的材料薄膜中非线性自旋轨道相互作用的可行性。值得注意的是,非线性张量可以混合泵场的长界线和横向成分。我们在从心理上观察到了我们从第二次谐波生成过程中的理论预测。尤其是,我们证明非线性薄膜可用于产生第二谐光灯的矢量涡流束,当时被圆形偏振的高斯束激发时。
摘要可再生能源的概念已在世界上深深地根深蒂固,吸引了越来越多的研究人员和行业专业人员投入大量资源来推动更有效的系统的开发。虽然当前的大型风力涡轮机叶片达到50 m的长度,并且通常作为单个实体制造,但本研究的重点是专门针对小型涡轮机量身定制的刀片剖面的设计和评估。使用旋转成型制造刀片,采用各种聚合物(包括热塞和热塑性)的聚合物。为增强其机械性能,将泡沫掺入聚氨酯和聚乙烯叶片中。通过机械分析来评估各种配方和泡沫来评估合适的刀片。空气动力学分析是在不同的风速和俯仰角范围内进行的。结果表明功率系数(CP)接近0.5。
a 法国留尼汪圣皮埃尔留尼汪大学中心医院内分泌与糖尿病科 b 法国留尼汪圣皮埃尔留尼汪大学中心医院 INSERM,CIC 1410 c 法国留尼汪圣皮埃尔留尼汪大学中心医院传染病科、内科、皮肤科 d 法国留尼汪圣克洛蒂尔德留尼汪大学 UMR PIMIT(CNRS 9192、INSERM U1187、IRD 249) e 法国留尼汪圣皮埃尔留尼汪大学中心医院临床与转化研究平台f 法国拉鲁尼翁大学医院中心生物化学系,圣皮埃尔,拉鲁尼翁,法国 g UMR 糖尿病动脉粥样硬化血栓形成治疗拉鲁尼翁印度洋 (D ' eTROI) (INSERM U1188),拉鲁尼翁大学 CYROI 平台,圣克洛蒂尔德,拉鲁尼翁,法国
糖尿病被认为是一种慢性代谢紊乱,其特征是高血糖(空腹和餐后血糖升高)和碳水化合物、脂肪和蛋白质代谢失衡,并因胰岛素抵抗而导致多种并发症 [1] 。自古以来,草药 (HM) 在全球医疗保健系统中发挥着关键作用。为确保功效和安全性,对其多种化学成分的质量和控制进行彻底检查至关重要。植物营养素或植物化学物质通常存在于蔬菜中,在健康管理领域一直是较少探索的领域。它们帮助植物抵抗致病细菌、真菌、昆虫和其他环境压力源 [2] 。此外,由于其结构中存在不同的化学变化,它们也是有效的蛋白质调节剂、细胞内信号级联系统激活剂和插入剂 [3] 。多年来,天然产物一直是用于药物配制和健康改善的生物活性化合物的主要来源。通过民族药理学方法,人们更深入地研究了传统和民间医学知识,为药物发现和开发提供了有益的见解。这导致了几种植物源植物药的发现。这些包括紫杉醇、长春花碱、长春新碱、吗啡、利血平和地高辛 [4] 。由于饮食不当,肥胖、心血管疾病、癌症、糖尿病和其他慢性疾病的发病率增加,这对人群的发病率和死亡率产生了巨大的流行病学影响 [5] 。微量成分被称为抗氧化剂,参与清除自由基和抑制脂质过氧化,从而防止氧化链式反应的发生或进展 [6] 。
放射治疗 (RT) 的主要挑战是向肿瘤提供足够高的治疗剂量,同时保持附近器官受到可耐受的剂量,新的治疗方式正在迅速涌现。FLASH 放射治疗提供的治疗剂量比传统 RT(0.05 Gy/s)快几个数量级(≥40 Gy/s),并且已被证明可以降低正常组织发生并发症的可能性,同时提供与传统剂量率相似或更好的肿瘤控制率,减少治疗时间和器官运动相关问题。然而,FLASH RT 的临床实施面临着重大挑战,因为它的要求使得大多数现有的剂量测定设备已过时。碳化硅 (SiC) 的物理特性使其成为一种有趣的辐射剂量测定材料。SiC 的宽带隙降低了热产生电荷载流子的速率,从而与硅相比降低了漏电流和噪声。特别值得注意的是,SiC 每 mGy 沉积的信号产量(4H-SiC 为 425 pC/(mGy · mm3))低于硅。这使得 SiC 成为超高剂量脉冲辐射场或直接光束监测剂量测定的良好选择,其中半导体中的瞬时剂量沉积很大,可能会使传统硅二极管饱和。此外,SiC 具有更高的位移能量阈值,因此辐射硬度高于硅。如今,SiC 技术已经成熟,高质量基板可达 200 毫米,可广泛使用。在本次演讲中,我们将介绍在 IMB- CNM 设计和制造的新型碳化硅 PiN 二极管,旨在应对 FLASH RT 的技术挑战。在 PTB(德国)使用 20 MeV FLASH 电子束进行的首次表征中,这些二极管显示出其适用于高达每脉冲 11 Gy(4 MGy/s)剂量的相对剂量测定,且剂量测定性能可与商用金刚石剂量计相媲美 [doi:10.1088/1361-6560/ad37eb]。在 CMAM(西班牙)使用 7 MeV 质子测试了带有 FLASH 质子束的 SiC 二极管的性能,结果显示它们与剂量率具有良好的信号线性度,并且每脉冲剂量至少为 20 Gy 时响应可重复。最后,在 CNA(西班牙)使用高 LET、强脉冲质子束研究了二极管的抗辐射性。二极管的灵敏度在 1 MeV 质子中以 -1.34%/kGy 的初始速率逐渐下降,并且仅在接近 750 kGy 的剂量下才稳定下来。然而,即使累积剂量为几 MGy,每脉冲剂量的线性响应在很宽的剂量率范围内也能保持。所有这些测量都是在无需外部施加电压的情况下进行的。总之,在 IMB-CNM 制造的碳化硅二极管是硅和金刚石剂量计的真正替代品,适用于需要精确实时相对剂量测定的广泛应用,要求快速响应和长期稳定性。
这项研究研究了在声学应用中使用基于碳化硅的分层表面声波(SAW)设备的可行性。通过理论分析研究了温度稳定的层状结构TEO 3 /SIC /128 O Y-X Linbo 3的声学特性。此分析包括对关键参数的评估,例如重叠积分,功绩图和衍射效率。使用SAW软件获得了这些计算所需的SAW传播特性和字段填充。结果表明,分层结构具有近96%的较高衍射效率,并且值得良好的声学数字有希望的值,这表明在低驱动功率声音器件设备中的潜在用途。该研究得出结论,基于3C E的分层结构具有出色的声学特性,并且具有可以承受恶劣环境条件的声学设备中使用的潜力。
摘要背景:已经开发了三种不同的评分系统来评估同种异性造血干细胞移植(Allo-HSCT)的移植前合并症:造血细胞移植特异性合并症指数,合并症/年龄指数,增强的合并/年龄段。All were devised to predict overall survival (OS) and disease-free survival (DFS) survivals and non-relapse mortality (NRM) in patients receiving HLA-matched Allo-HSCT, but their performance has scarcely been studied in the haploidentical Allo-HSCT setting with post-transplant cyclophosphamide, a procedure in con- stant expansion worldwide.方法:为了解决这个问题,在四个不同中心的223名接受单倍同化Allo-HSCT治疗的患者中检查了它们对生存和NRM的影响。
广泛使用农药和除草剂已导致土壤和水污染,对生物多样性和人类健康产生负面影响。Microfungi通过酶促过程有助于这些化学物质的降解,从而提供了一种环保替代方案的常规修复技术。了解真菌介导的生物降解机制对于可持续农业和环境实践至关重要。