摘要 — 多波段相干通信被视为一种有希望的候选技术,可满足日益增长的更高数据速率和容量需求。同时,相干通信有望在不久的将来进入数据中心领域。随着数据和电信领域的相干数据链路跨越多个光波段,相干收发器设计和流量工程的新方法将成为必需。在本文中,我们提出了一种用于 O 波段和 C 波段的单片集成硅光子相干接收器。该接收器采用 2×2 多模干涉耦合器网络,作为针对 1430 nm(E 波段)优化的 90 ◦ 混合。总功耗为 460 mW,占地面积约为 6 mm 2,光电带宽为 33 GHz。 64 GBd 操作在 O 波段和 C 波段上得到演示,这与 C 波段最先进的硅光子相干接收机相比具有竞争力,并且是 O 波段相干通信迄今为止的最高符号率。
通信系统通过在各个节点之间发送和接收无线电信号来发挥作用。这些无线电信号携带数据内容,例如视频、音频或互联网流量。随着物联网设备和支持 LTE/5G 的手机的最近激增,频谱拥塞会降低网络性能和可靠性。从历史上看,频谱的管理方式是强制每个通信系统在特定的预定义固定频率范围内运行。这种系统使频谱管理变得简单,但可能会导致大量频谱利用不足。例如,一组频率可能分配给很少使用频谱的一组用户,而另一组用户可能被困在比他们所需的带宽更少的带宽中。提前计划并确定此类用例的优先级通常很困难。一种更先进的方法是允许动态频谱分配以最大限度地提高利用率并确定使用优先级。这种方法通常称为频谱共享。虽然完全自主的频谱共享仍然是一个研究课题,但涉及 DARPA 频谱协作挑战赛 (SC2) 的演示已经显示出令人鼓舞的结果。
检测低功率和高功率光的短脉冲 能够在恶劣环境和很宽的温度范围内工作 大动态范围 在感应到明亮目标后,快速过载恢复以检测后续信号 承受高光功率密度,提高探测器的损伤阈值 除了这些标准之外,许多 LRF 和 LiDAR 系统设计都会受益于在传输和接收过程中使用光纤,以改善系统热管理并降低整体系统噪音 (1) 。许多国防应用都需要商用现货 (COTS) 组件,因为 COTS 更容易获得且更具成本效益。CMC 推出了一系列新的 COTS 尾纤 SMT 封装铟镓砷 (InGaAs) 雪崩光电二极管 (APD) LIDAR/LRF 接收器,276-339832-VAR,根据 MIL-STD 规格进行设计、测试和验证。这款 COTS APD 接收器提供的性能可以更准确地检测更长距离的小目标。坚固的光纤尾纤封装有利于节省空间和简化系统集成,同时满足 MIL-STD 环境操作条件。
光接收器的性能受到互补金属氧化物半导体 (CMOS) 运算放大器 (op-amps) 设计的显著影响,这种设计受益于 CMOS 技术的进步,可降低噪声和功耗。本研究概述了低噪声 CMOS 运算放大器的设计过程,旨在实现高质量的信号输出,这对于必须尽量减少噪声干扰的专业音频设备和精密仪器等应用至关重要。通常,降低噪声的努力会导致速度降低和功耗增加。因此,实现性能参数的最佳平衡至关重要,噪声水平是主要关注点。提出了一种有效的设计方法来提高运算放大器的整体性能。采用分析方法来深入了解设计,优先考虑噪声性能。设备尺寸和偏置条件是根据噪声水平、带宽、信号摆幅、斜率和功耗等几个因素确定的。已经开发了一个两级运算放大器来验证所提出的设计方法。通过该方法得出的器件参数与使用 MATLAB 生成的模拟结果非常吻合,强调了设计过程的准确性和有效性。
•在1990年代开发的决策过程,以帮助通过复杂的优先级方案进行工作;在军事,政府,私营部门和学术界中广泛使用。•基于支持决策过程而不是直觉的知识来鼓励决策。•通过一次比较两个标准(即成对比较)来简化过程,以确定哪些对决策目标更重要。•采用以客观,加权标准和替代方案为中心的多层次(分层)结构。
摘要 — 本文介绍了一种体积小、功耗低的毫米波相控阵接收机前端。本振 (LO) 和射频 (RF) 相移方案相结合,用于降低功耗和 RF 路径损耗。此外,在有源电路的实现中,采用了体隔离技术,以最少的级数实现更高的功率增益。该技术还用于 RF 路径移相器开关以减轻损耗。为了验证所提出的架构,采用 65 nm 体 CMOS 工艺制造了一个单元件 56 至 66 GHz 相控阵接收机前端。根据测量结果,接收机实现了 ∼ 14.85 dB 的功率增益和 5.7 dB 的最小噪声系数 (NF)。测得的平均 RMS 相位和增益误差分别为 ∼ 3.5 ◦ 和 ∼ 0.45 dB。接收器链的输入 1dB 压缩点 (P − 1dB ) 约为 − 19 dBm。完整的接收器(包括有源平衡-不平衡转换器和所需缓冲器(不包括 LO))在 1 V 电源下消耗约 50 mW 功率,不包括焊盘,占用硅片面积为 0.93 mm 2 。
美国军方继续鼓励对强大的卫星通信的需求,以便成功执行国防任务。立方体卫星是一种小型航天器,最初用于扩大航空航天和卫星通信领域的教育机会。这项研究探索了现有和潜在的地面站架构选项,以集成来自立方体卫星的自由空间光通信下行链路。未来的实验计划将侧重于在更多样化的环境中应用此功能,以包括扩展的地面架构机会。系统工程设计和架构方法有助于了解当前的硬件和软件选项以及未来扩展机会的限制。通过考虑可比较的规划方法,可以组织架构开发的替代方案,以帮助识别子系统和地面通信接口的控制因素。作为一个成熟的立方体卫星通信系统,现有的移动立方体卫星指挥和控制 (MC3) 架构是实验集成和最终考虑计划概念验证的绝佳候选者。
C Crystal-based receiver F Time & frequency reference receiver, VCTCXO-based G, Q TCXO-based receiver H Accompanying module for heading information J, M Crystal-based receiver and low backup battery current K Automotive dead reckoning (ADR) with RTK for lane-accurate positioning L Automotive dead reckoning (ADR) with 3D inertial sensors N TCXO-based receiver, upgradability (Flash)P高精确GNSS接收器R高精度GNSS接收器具有集成IMU传感器s,w tcxo的接收器,带有天线主管或/和锯过滤器t时间同步接收器,基于tcxo的u u-noded dead dead reckoning(udr)与3D惯性传感器v adr and udr fess 3d dd dd dd dd/divrial d/div
数字处理能力的飞速发展导致了对高性能模拟信号处理产品的需求增加。如今,蜂窝网络除了提供传统语音之外,还提供大量数据和视频,而且传输速率比以往任何时候都快。这导致了依赖复杂数字技术的新调制技术和新空中接口标准的出现。虽然数字技术使系统能够运行得更快、功耗更低、使用更小的封装尺寸并提高每一代系统的可靠性,但这些系统对系统的 RF 和模拟信号采集部分提出了新的要求。基站发射机的复杂调制和宽带宽导致功率放大器 (PA) 的波峰因数更高。为了满足更高波峰因数下更严格的要求,功率放大器通常尺寸过大,以便在线性区域内运行。如果不进行数字校正,PA 效率可能在 10% 左右,这意味着 20 W PA 需要 200 W 的能力。PA 是基站中最大的电力消耗者,因此是蜂窝服务提供商运营费用的重要因素。为了提高 PA 效率,数字技术用于峰值因数降低 (CFR) 和数字预失真 (DPD)。虽然放大器在饱和时效率最高,但它会变得高度非线性。复杂的数字调制需要 PA 具有极高的线性度,
摘要 本文提出了一种低功耗宽带射频到基带 (BB) 电流复用接收器 (CRR) 前端,它同时利用了 1/f 噪声消除 (NC) 技术和有源电感器 (AI),工作频率为 1 GHz 至 1.7 GHz,适用于 L 波段应用,包括那些需要高调制带宽的应用。CRR 前端采用单电源,并与 BB 电路共享低噪声跨导放大器 (LNTA) 的偏置电流,以降低功耗。为了最大限度地减少下变频之前射频 (RF) 信号的损失,高阻抗 AI 电路将混频器输入与 CRR 输出节点隔离。1/f NC 电路可抑制泄漏到输出的 LNTA 低频噪声。带有 gm 增强的共栅极 LNTA 以及单端到差分 LC 平衡-不平衡转换器用于增强输入匹配、变频增益和噪声系数 (NF)。所提出的接收器采用 TSMC 130 nm CMOS 工艺制造,占用有效面积为 0.54mm 2 。输入匹配 (S 11 ) 在 1 GHz 至 1 . 7 GHz 范围内低于 − 10 dB。在本振 (LO) 频率为 1 . 3 GHz、中频 (IF) 为 10 MHz 和默认电流设置下,CRR 实现了 41 . 5 dB 的转换增益、6 . 5 dB 的双边带 (DSB) NF 和 − 28.2 dBm 的 IIP3,同时消耗 1.66 mA 电流,电源电压为 1 . 2 V。