2.11 责任 (S1 An3 3) ...................................................................................................................... 41 2.12 行为 (S1 An3 4) .......................................................................................................................... 41 3.1.3 通风口 ...................................................................................................................................... 41 3.5.2 任何影响气球适航性的损坏................................................................................................... 41 3.7 高度计 ...................................................................................................................................... 41 3.8 比赛号码 ...................................................................................................................................... 41 3.10.1 回收机组不得在任何 MMA 内... ............................................................................................. 41
摘要 我们介绍并分析了 q 状态 Potts-Hopfield 神经网络 (NN) 的开放量子泛化,这是一种基于多层经典自旋的联想记忆模型。这个多体系统的动力学以 Lindblad 型马尔可夫主方程的形式表示,该方程允许将概率经典和相干量子过程平等地结合起来。通过采用平均场描述,我们研究了由温度引起的经典涨落和由相干自旋旋转引起的量子涨落如何影响网络检索存储的记忆模式的能力。我们构建了相应的相图,在低温状态下,该相图显示的模式检索类似于经典的 Potts-Hopfield NN。然而,当量子涨落增加时,会出现极限环相,而极限环相没有经典对应相。这表明量子效应可以相对于经典模型从质上改变稳态流形的结构,并可能允许人们编码和检索新类型的模式。
摘要。气溶胶在大气中的辐射转移中起关键作用,它们对气候变化产生了重大影响。在本文中,我们提出并实施了使用其Mi-Crophysical特性开发气溶胶模型的框架。诸如尺寸分布,复杂折射率和球形百分比之类的微物理特性源自全球气溶胶机器人网络(Aeronet)。但是,当执行藻类测量程序(即,早晨,早晨和晴天晚些时候的晚期)时,通常会检索这些测量值,并且可能不会对卫星覆盖时间进行临时影响,因此无法携带卫星产品的有效阀门。To address this problem of temporal inconsistency of satel- lite and ground-based measurements, we developed an ap- proach to retrieve these microphysical properties (and the corresponding aerosol model) using the optical thickness at 440 nm, τ 440 , and the Ångström coefficient between 440 and 870 nm, α 440–870 .在过去28年内,开发了851个Aeronet部位的气溶胶模型。获得的恢复表明,在经验上可以以高达23%的不确定性检索微物理的特性。一个例外是折射率NI的虚构部分,为此,衍生的不确定性达到了38%。当需要检索微物理特性以及验证卫星衍生的产品时,这些气溶胶的特定参数模型可用于研究。
摘要 - 重定位级代码完成旨在在指定存储库的上下文中为未完成的代码段生成代码。现有方法主要依赖于检索增强的生成策略,这是由于输入序列长度的限制。然而,BM25(例如BM25)努力捕获代码语义的传统基于词汇的检索方法,而基于模型的检索方法由于缺乏标记的培训数据而面临挑战。因此,我们提出了一种新颖的增强学习框架RLCoder,它可以使得猎犬能够学习检索有用的内容以完成代码完成,而无需标记数据。具体来说,当将检索到的内容作为附加上下文提供时,我们根据目标代码的困惑迭代评估了检索内容的有用性,并提供了反馈以更新回收者参数。这个迭代过程使得猎犬能够从其成功和失败中学习,从而逐渐提高其检索相关和高质量内容的能力。考虑到并非所有情况都需要超出代码文件的信息,并且并非所有检索到上下文都对生成有所帮助,我们还引入了停止信号机制,从而允许检索员决定何时检索以及哪些候选者自动保留。广泛的实验结果表明,RLCODER始终优于交叉码头和reboeval的最先进方法,比以前的方法实现了12.2%的EM改进。此外,实验表明,我们的框架可以跨越不同的编程语言概括,并进一步改善了诸如RecoCoder之类的先前方法。索引术语 - 固定级代码完成,增强学习,困惑,停止信号机制
搜索提示:不要忘记复数拼写。示例:导师计划或导师。高级搜索提示:通过将此符号(*)放在主字上来使用截断;例如,导师*将检索所有以下所有内容:导师,导师,指导,指导。不要忘记其他拼写,例如英国血液学拼写与血液学。