过多的碳排放加剧了气候变暖,对人类社会和地球生态系统构成了严重的挑战(Liu and Deng,2011年)。森林是土地生态系统的重要组成部分,贡献了地下碳的大部分和近一半的地下碳,在调节全球碳周期以及应对气候变化方面起着至关重要的作用(Yun等,2018)。大约77%的全球地面碳池存储在森林生态系统中(Wang and Wang,2015年)。估计森林生态系统碳储存将有助于我们更好地了解森林在全球变暖中的作用(Fang and Wang,2001)。积累方法是估计森林碳储存的常见方法。通过抽样和测量来计算森林中主要树种的平均能力(T/m)。根据森林总库存计算生物质,并根据生物量和碳量之间的转化系数计算碳存储量(Williams等,2000)。森林碳存储与环境因素密切相关。研究(Hagedorn等,2003; Yue等,2018)表明,土壤C/N和总氮含量与森林生态系统的碳存储显着相关。但是,关于森林储存与根际土壤微生物之间相关性的系统研究很少。
摘要:鼻塞炎是寻求医疗咨询的患者中最常见的疾病之一。鼻窦炎是一群疾病,可能是急性或慢性病。关于鼻孔炎的当前知识状态列出了欧洲关于鼻鼻炎和鼻息音2020年的欧洲立场论文的建议(EPOS 2020)。在鼻窦炎症变化的背景下,越来越多的关注对微生物群的状况。在抗生素治疗过程中,过度处方抗生素对细菌耐药性的增加以及微生物群组成障碍的显着变化也存在负面影响。由于急性鼻窦炎的最常见病因是病毒,因此在简单鼻窦炎中使用抗生素是没有道理的。寻求新的治疗溶液,包括使用草药。EPOS 2020文档建议在简单的急性鼻炎中使用BNO 1016。新的治疗模型还考虑了生物药物的使用,尤其是在治疗慢性鼻塞炎方面。
在土壤中存在多种细菌,但是在根际地区,大多数微生物有助于植物捍卫疾病并促进营养吸收。这些微生物得到了植物的支持,它们被称为植物生长 - 促进根瘤菌(PGPR)。PGPR有可能以对环境更有利的方式替代化学肥料。氟化物(F)是高度上升的,自然存在的污染物之一,由于其抗菌能力而可能对PGPR造成危害。F与地下水系统中不同细菌物种的相互作用尚不清楚。然而,PGPR与根际区域中植物的相互作用减少了污染物的有害作用,并增加了植物忍受非生物应激的能力。许多研究表明,PGPR已开发出F防御机制,其中包括外排泵,细胞内的隔离,酶修饰,增强的DNA修复机制,排毒酶,离子转运蛋白/抗胞蛋白,F核糖开关和遗传突变。这些耐药性特征经常是通过从高F污染区域分离PGPR或在实验室条件下将细胞暴露于氟化物中发现的。众多研究已经确定了F-F Transorters和F.植物的众所周知靶标的其他F转运蛋白和重复的F.植物易于F。pgprs可以用作土壤环境的有效f生物化体。环境生物技术专注于创建遗传修饰的根瘤菌,可以随着时间的流逝而降解F污染物。本综述着重于对当代生物技术技术(例如基因编辑和操纵方法)进行全面分析,用于改善植物 - 微生物相互作用以进行F修复,并表明PGPR在改善土壤健康和降低F毒性的有害影响方面的重要性。还强调了微生物援助领域的最新发展,在治疗F污染环境中也得到了强调。
摘要:黄色早期沼泽兰花(Dactylorhiza incarnata ssp。ochroleuca)是英国的一种非常端庄的陆地兰花。以前的尝试将共生幼苗转移到最后一个野外场地附近的地点表现出了一些成功,尽管天气不良,但生存率仍为10%。然而,为了促进未来的重新引入工作或连接易位,需要在最终剩余的野生部位对真菌微生物组和非生物土壤特征有更全面的了解。获得有关野生遗址的真菌群落和土壤养分组成的全面信息具有显着的好处,并且可能证明对未来涉及威胁兰花的未来保护易位的成功至关重要。这项在最后一个剩下的野生部位进行的这项初步研究表明,兰花菌根真菌秩序的相对丰度与土壤中硝酸盐和磷酸盐的浓度之间存在显着相关性。发现另一个兰花菌根真菌组Sebacinales被发现在整个站点中广泛分布。讨论了整个地点的真菌群落的组成,兰花托管和非孔子托管土壤是为了加强当前种群并防止这种兰花灭绝的。
关于根特征的最新研究表明,有两个轴解释了地下的特征变化:与菌根合作伙伴的协作轴和保护和保护(“快速 - 慢”)轴。然而,这些特征轴是否影响土壤传播真菌的组装尚不清楚。我们期望腐生性真菌与根特征的保护轴相连,而致病性和羊膜菌根真菌真菌与协作轴的链接相反,但在相反的方向上,如弧形菌根菌根真菌可能提供致病原的保护。为了检验这些假设,我们测序了根际真菌群落和25种草地植物物种的单一培养物中的根特征,年龄不同。在真菌公会中,我们评估了真菌物种的丰富度,相对丰度和社区组成。与我们的假设相反,真菌多样性和相对丰度与根特征轴没有密切相关。然而,腐生真菌群落组成受到菌群梯度的保护梯度和致病群落组成的影响。根际AMF社区组成并未沿协作梯度发生变化,即使根性状轴与根菌根菌落定殖速率一致。总体而言,我们的结果表明,从长远来看,根特性轴与真菌群落组成有关。
脂质体是双层囊泡,它们在水性环境中分布后自发形成(10)。磷脂,例如磷脂酰胆碱和磷脂酰甘油,是两亲的,而其他物质(如胆固醇)通常包括在制剂中(9,10)。可以在脂质体内诱捕亲水性化合物,而亲脂化合物通常包含在脂质体膜中(10)。脂质体因其在靶向药物递送中的潜力和实际使用而变得流行。脂质体以其在靶向药物递送中的潜力和实际使用而闻名(11)。此外,脂质体似乎具有许多优势,例如低成本,高稳定性和生物降解性,以及刺激体液和细胞介导的免疫反应的能力(10,11)。
该研究研究了使用结构表征(气相色谱质量谱图,GC-MS,GC-MS和傅立叶转化基础型,FTIR,FTIR)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir),分别研究了1.0 m HCl和0.5 m H 2 SO诱导的低碳钢上的抗腐烂潜力(ZO)。电位动力学极化,PDP)技术和理论模拟。进行了结构表征,以鉴定植物提取物中存在的化学成分和官能团,而电化学技术和理论计算则用于检查提取物的抗腐蚀潜力并确定实验结果。GC-MS的结果表明,提取物中存在二十三(23)个化合物,其中三个(1-(1,5-二甲基-4-己基)-4-甲基 - 十二烷酸,十二烷酸和9-二十二苯卡烯酸(Z)-2- hydroxy-1-(hydroxy-1-(hydroxy-etraculation for for in Concution)在ZO提取物中存在以下官能团(O – H,C = C,C = O,C – C和C – H)。EIS的结果表明,ZO提取物在1 M HCl中的低碳钢和0.5 m H 2中的低碳钢和93.6%的腐蚀抑制作用分别在1000 mg / l的最大抑制剂浓度下分别为1000 mg / l。另外,PDP的结果表明,ZO提取物作为混合抑制剂起作用,因为阳极反应过程都改变了。量子化学计算结果表明,与其他两种化合物相比,9-八度二苯甲酸(Z)-2-羟基-1-(羟甲基)乙基酯具有良好的能隙(∆ E),表明其在硫酸环境中与金属表面更好地与金属表面相互作用。通过分子动力学模拟,在H 2 So 4环境中,在H 2 SO 4环境中,其良好的吸附能量为-355.55 kcal / mol在H 2 So 4 So环境中与-167.81kcal / mol相比。
具有对植物致病真菌的拮抗活性的植物生长根瘤菌(PGPR)是基于生物防治活性开发新型植物保护产品的宝贵候选者。这种产品制定的第一步是筛选所选微生物的潜在效果。在这项研究中,从番茄植物的根际分离了非致病性根瘤菌,并评估了其对三种产生霉菌毒素的替代品的生物防治活性。对其生物防治潜力的评估涉及研究真菌生物量和替代毒素的减少。开发的排名系统允许在最初的85个分离株中识别12种表现最佳菌株。几个根瘤菌显示出真菌生物量(高达76%)和/或霉菌毒素产生(高达99.7%)的显着降低。此外,相同的分离株还表现出植物生长促进(PGP)特征,例如铁载体或IAA产生,无机磷酸盐溶解和氮固定,从而确保PGPR的多面性质。芽孢杆菌种,尤其是双链球菌和两种枯草芽孢杆菌菌株,在减少真菌生物量方面表现出最高的效率,并且在降低霉菌毒素的产生方面也有效。分离物,例如肠杆菌Ludwigii,肠杆菌,肠杆菌,Nematodiphila,Pantoea groglomerans和Kosakonia cowanii表现出适度的效果。结果表明,通过利用不同微生物菌株的多种能力,一种基于财团的方法将提供更广泛的效果,从而为可持续农业提供了更令人鼓舞的解决方案,并解决了与作物相关的生物挑战的多面性质。
1 卓越转化医学中心,医学院,拉弗朗特拉大学,智利,智利,智利2学院,智利工程学院,智利自主大学,智利自主大学,智利,3生物技术研究中心,成本研究所环境,拉弗朗特拉大学,智利,智利5号,巴塞罗那大学自治大学,生物医学研究生生物学研究,生物医学研究I研究院饮食学,瓦尔帕拉索大学药学学院,瓦尔帕拉索大学,智利,8个微型生物培养中心,瓦尔帕拉索大学,瓦尔帕拉索大学,智利瓦尔帕拉索大学,智利9,安提法加斯塔大学健康科学系9生物医学系
牙齿是连续的结构,其进化和发育历史与脊椎动物矿化组织的出现密切相关。牙齿表现出多种形式,在现存脊椎动物中发育模式不同,使其成为研究物种多样化的重要元素。鲨鱼牙齿永久更新,并表现出与交配和营养行为相关的形态。这项工作首先使用 3D 几何形态测量和机器学习来评估两种鲨鱼牙齿形态的变化。首次详细描述了雌雄异齿在鲨鱼个体发育过程中的出现,并表明在进行物种鉴别之前应首先评估这种自然变异。这项工作还质疑特定蛋白质在发育过程中对鲨鱼牙齿形态获得的作用。功能测试表明 Shh 和 Fgf3 对尖端形态发生和矿化过程有影响。这些蛋白质是对观察到的牙齿差异的有前途的解释性变量,导致假设它们在具有物种形成和营养和交配行为的结构演变中的作用,这是对广泛的bone tertebraey thermenthers thry thry thry thriment thrimation sermast sermast symant symast and symast symast and sentriment and symast sensiment and symast rastiment and symast symast insment astriment symast rast的同时,长期以来,这一组中的发生