摘要:研究pH敏感瓜尔胶接枝聚合物包覆5氟尿嘧啶的设计、细胞毒性及肿瘤靶向药物递送。以瓜尔胶、2-羟乙基甲基丙烯酸酯和核黄素靶向剂为原料,以N,N-亚甲基双丙烯酰胺为交联剂,四甲基乙二胺(TEMED)引发剂和过硫酸铵为催化剂,成功制备了载GG接枝p(HEMA)共轭核黄素薄膜(GG-gP(HEMA)-RF),该薄膜可负载5氟尿嘧啶并用于肿瘤靶向治疗。采用FT-IR和XRD光谱技术分析了GG-gP(HEMA)-RF的结构特征。SEM结果表明,该载体呈均匀的棒状,孔隙率低,对5氟尿嘧啶的包覆和缓释性能优异。靶向药物输送策略因其疗效更有效、副作用更少等优势而受到科学界的特别关注。用台盼蓝拒染试验研究了不同浓度(0、25、50、100 和 150 μg/mL)下 5FU 负载的 GG-gP(HEMA)-RF 对艾氏腹水癌 (EAC) 细胞的体外细胞毒性作用。MTT 细胞毒性试验研究了针对 EAC 实验模型的细胞活力,并表明载体具有良好的生物相容性。结果揭示了艾氏腹水癌细胞系中的抗增殖作用以及凋亡的分子信号传导和产生的活性氧 (ROS)。EAC 细胞中凋亡的形态变化明显,染色后用光学显微镜观察到。采用DPPH自由基清除实验测定了5FU负载和未负载的GG-gP(HEMA)-RF的自由基清除活性,并用电子显微镜和荧光光谱法研究了5FU负载的GG-gP(HEMA)-RF与DNA的相互作用。
核黄素-5-磷酸 (RF) 是角膜交联 (CXL) 中最常用的光敏剂,但其亲水性和负电荷限制了其穿透角膜上皮进入基质。为了增强 RF 对角膜的通透性并提高其在圆锥角膜治疗中的疗效,以 ZIF-8 纳米材料为载体制备了新型芙蓉状 RF@ZIF-8 微球复合材料 [6RF@ZIF-8 NF (纳米片)],其特点是疏水性、正电位、生物相容性、高负载能力和大表面积。苏木精和伊红内皮染色和 TUNEL 分析均证明 6RF@ZIF-8 NF 具有良好的生物相容性。在体内研究中,6RF@ZIF-8 NF 表现出优异的角膜渗透性和出色的跨上皮 CXL (TE-CXL) 功效,略优于传统 CXL 方案。此外,6RF@ZIF-8 NF 的特殊芙蓉状结构意味着它比 6RF@ZIF-8 NP(纳米颗粒)具有更好的 TE-CXL 功效,因为与上皮的接触面积更大,RF 释放通道更短。这些结果表明 6RF@ZIF-8 NF 有望用于跨上皮角膜交联,避免上皮清创的需要。
饮食在冠心病的发展和预防中起着至关重要的作用,各种饮食元素,如膳食中的 omega-3 ( 3 )、炎症指数 ( 5 )、维生素 K ( 6 )、镁 ( 7 )、L-精氨酸 ( 8 )、纤维 ( 9 )、钙 ( 10 )、维生素 D ( 10 )、维生素 A ( 11 ) 和开心果 ( 12 ) 已被科学证明与冠心病的发展有关。B 族维生素是一组水溶性维生素,对同型半胱氨酸 (Hcy) 的降解至关重要,而 Hcy 水平升高已被确认为冠心病的独立风险因素 ( 13 , 14 )。因此,B 族维生素的缺乏可能与冠心病的流行有关。然而,目前的研究大多集中在维生素 B6、维生素 B12 和叶酸与冠心病的关系上,很少有研究关注核黄素与冠心病之间的关系(15,16)。
成分糖,富含粉的粉(小麦粉,烟酸,降铁,硫胺素单硝酸盐,核黄素,叶酸),谷物碎屑(浓粉(富集面粉[小麦粉,烟酸,降低铁,硫胺素,硫胺素单硝酸盐,单硝酸盐),单硝酸盐,单硝酸盐,核酸果酸,核酸酸酯,叶酸] ,黄油(巴氏杀菌奶油,天然风味),大豆油,水,甘蔗糖蜜,肉桂。
这项研究的主要目的是为组织工程应用开发经济,环保且可延展的生物材料。水和甘油已被用作明胶水凝胶合成的溶剂。这种溶剂混合物导致具有改善热性能的生物材料。确实,达到了16°C的热过渡温度。此外,为了增强机械性能,核黄素被用作交联剂。使用紫外线辐射开始化学交联步,以获得明胶链的核黄素自由基聚合,因此,明胶水凝胶的流变学特性得到了改善。因此,明胶 - 紫外线血凝胶水凝胶显示出良好的肿胀和增加的机械性能,获得了一种新颖的材料,用于药物输送和医疗用途。版权所有©2019 VBRI出版社。关键字:组织工程,生物聚合物,交联。简介
具有溶于水中并在碳水化合物,蛋白质和脂质的代谢中发挥重要作用的能力[30]。在这方面,先前描述的是,实验室产生了多种量的B组维生素Del Valle等人,[31]和Leblanc等人[32]发现,L。rhamnosus GG是一种良好的叶酸和核黄素生产者,B。longum和B. longum和B. bifidum和B. b。Hill等人,[33]报告说,一些细菌产生的维生素B12(钴胺),例如某种乳酸杆菌和丙片。益生菌细菌,主要属于乳杆菌和双歧杆菌,赋予了许多健康益处,包括维生素的产生[34,35,36]。某些实验室能够合成B果实(例如核黄素)[37]。目前,
富含小麦粉(麦芽粉,烟酸,降铁,硫胺素单硝酸盐,核黄素,叶酸),糖,糖,棕榈油和/或兴趣的大豆油,葡萄糖,可可糖(使用碱),含有2%或更少碳酸氢盐),天然和人造口味和大豆卵磷脂。
利用基因编辑技术,成功培育出携带与导致 RTD 2 型的 SLC52A2 基因突变相同的基因突变的小鼠(“RTD 小鼠”)。这些 RTD 小鼠的早期版本在出生前就死亡了。然而,通过在怀孕期间为母亲提供高剂量的核黄素 (FMN) 以及在试验不同的 SLC52A2 基因突变组合和小鼠品种后,成功的 RTD 小鼠可以活着出生以供研究。培育这些 RTD 小鼠主要是为了证明 RTD 基因疗法的安全性和有效性,这是开始人类临床试验前的必要步骤。该基因治疗项目是与德克萨斯州西南德克萨斯大学 (UT) 的 Steven Gray 博士合作进行的。这些 RTD 小鼠还将用于研究导致 RTD 的机制并开发其他新的 RTD 治疗策略。在开始基因治疗试验之前,有必要了解这些 RTD 小鼠的症状和存活率。该项目跟踪了未接受任何治疗或接受与 RTD 患者接受的类似核黄素治疗的 RTD 小鼠组。在研究结束时,测量了小鼠血液和大脑中的核黄素水平(RF、FMN 和 FAD)。导致视力丧失的视神经萎缩是 2 型 RTD 患者最常见的早期症状之一。根据这些信息,18 只 RTD 小鼠的眼睛也被解剖以寻找眼部疾病的迹象。我们很高兴地宣布,这个项目已经完成。这项研究的结果令人鼓舞,表明应该继续对这些 RTD 小鼠进行基因治疗试验。关于 Jackson Laboratories
胃肠道中的微生物群开始随着出生而形成。250-400 m 2人的胃肠道遇到了60多吨养分,而某些细菌通过在结肠上定居的这些营养素进入人体(1)。这些被定殖的社区被定义为肠道菌群(2)。肠道菌群基本上受宿主的遗传结构和环境因素的影响,并且在整个生命中也发生了变化。饮食成分,微生物群落的结构和重塑的答案受宿主的遗传基础设施的影响(3)。微生物群的变化与包括肥胖和糖尿病在内的代谢疾病的出现有关。另一方面,肠道菌群节奏的调节,粘膜屏障完整性的保护,免疫系统的增强和维生素K,烟酸,生物素,pridoxin,riboflavin,riboflavin,pantothenic Acid和tiamine,例如许多基本功能的综合功能(3)。肠道中的各种细菌群落和代谢物类别受营养,养分成分,饮食和饥饿方法的影响。是间歇性饥饿方法之一,限时营养(时间限制-TRF)是一种营养模型,近年来人类首选,并被发现在没有能量限制的人类和动物研究中为许多好处提供了许多好处(4)。健康的男性成年人会增加成年人的微生物多样性和财富(6)。在许多最近的研究中,已经发现TRF对肠道微生物组成有重大影响,饮食维度和时间限制的差异改变了微生物群落中细菌的丰度和比率(5)。发现,发现由高脂饮食喂养的饮食中添加TRF模型对小鼠的肠道微生物结构具有积极影响,并防止了高脂肪饮食引起的大量有害代谢作用(7,8)。还报道说,TRF模型可通过保护肥胖症来增加微生物的丰度,并减少肥胖的菌群的丰度(9)。