摘要:线粒体功能障碍和氧化应激是许多人类疾病的突出特征。线粒体功能的失调代表了神经退行性疾病和癌症等疾病的常见致病机制。烟酰胺腺嘌呤二核苷酸(NAD +)池的维持和阳性NAD + /NADH比率对于线粒体和细胞功能至关重要。NAD +的合成和降解及其主要中间体在细胞室之间的运输是维持最佳NAD水平的重要作用,可调节NAD +限制酶,例如Sirtuins(Sirt),例如ADP-ribose聚合酶,综合酶聚合酶和CD38/157 Enzymes,并且在静脉内外表现出色。在这篇综述中,我们介绍并讨论了NAD +,NAD +填充酶,线粒体功能和疾病之间的联系。试图用补充NAD +循环中间体和SIRTUINS和ADP-核糖基转移酶抑制剂来治疗各种疾病,可能会突出一种可能的治疗方法,用于治疗癌症和神经退行性疾病。
poly(ADP-核糖)聚合酶1(PARP1)由于PARP抑制剂特异性杀死通过同源重组而缺乏DNA修复的肿瘤的能力,因此已成为癌症疗法的核心靶标。在DNA损伤后,PARP1迅速与DNA断裂结合并触发ADP -Ribosylation信号传导。ADP-核糖基化对于募集各种因素到损害部位以及及时的DNA断裂中PARP1的分解很重要。的确,在存在PARP抑制剂的情况下,PARP1在DNA断裂处被困,这是这些抑制剂细胞毒素的基础机制。因此,任何影响捕获的细胞过程都被认为会影响PARP抑制剂效率,这可能会导致接受这些药物治疗的患者获得的耐药性。DNA损伤后有许多ADP-核糖基化靶标,包括PARP1本身以及组蛋白。最近的发现报道说,PARP1的自动修饰促进了其从DNA病变中释放,但其他ADP核糖基化蛋白对这一过程的潜在影响仍然未知。在这里,我们证明了组蛋白ADP - 核糖基化对于及时从病变中耗散PARP1的核糖基化也至关重要,从而有助于细胞对PARP抑制剂的耐药性。考虑ADP-核糖基化和其他组蛋白标记之间的串扰,我们的发现开辟了有趣的观点,可以开发出更有效的PARP抑制剂 - 驱动的癌症疗法。
由于 PARP 抑制剂能够特异性地杀死无法通过同源重组修复 DNA 的肿瘤,因此聚(ADP - 核糖)聚合酶 1 (PARP1) 已成为癌症治疗的中心靶点。DNA 损伤后,PARP1 会迅速与 DNA 断裂结合并触发 ADP - 核糖基化信号。ADP - 核糖基化对于将各种因子募集到损伤部位以及及时将 PARP1 从 DNA 断裂中分离非常重要。事实上,在 PARP 抑制剂存在的情况下,PARP1 会被困在 DNA 断裂处,这是这些抑制剂细胞毒性的潜在机制。因此,任何影响捕获的细胞过程都被认为会影响 PARP 抑制剂的效率,可能导致接受这些药物治疗的患者产生获得性耐药性。DNA 损伤后有许多 ADP - 核糖基化靶点,包括 PARP1 本身以及组蛋白。虽然最近的研究报告称 PARP1 的自我修饰会促进其从 DNA 损伤中释放,但其他 ADP - 核糖基化蛋白对这一过程的潜在影响仍不清楚。本文,我们证明组蛋白 ADP - 核糖基化对于 PARP1 从损伤中及时消散也至关重要,从而导致细胞对 PARP 抑制剂产生耐药性。考虑到 ADP - 核糖基化与其他组蛋白标记之间的串扰,我们的研究结果为开发更有效的 PARP 抑制剂驱动的癌症疗法开辟了有趣的前景。
多-ADP-核糖聚合酶(PARP)催化蛋白质聚ADP-核糖基化(parylation)。这种酶促翻译后的阳离子需要烟酰胺腺苷二核苷酸(NAD +)作为ADP-核糖的供体。ADP-核糖在各种类型的氨基酸残基的侧链之间的共价附着后,PARP可以继续在核糖基2 0 -OH位置依次添加ADP-核糖,从而导致线性或分支的聚-ADP-核糖(PAR)poly-Mers,最多300 ADP-ribose单位。1,2作为PARP家族的创始成员,PARP1在遗传毒性条件下占75 - 95%的细胞核化活性。3 - 5除了抚养许多蛋白质底物外,PARP1还经历了强大的自身释放。通过将聚合物添加到自身和其他蛋白质中,PARP1介导的Parylation在
PARP酶的特征是在家族的基因和蛋白质中存在特征性PARP结构域(参考文献1)。“直接”家族在人类中体现了18个基因(PARP1-4,PARP5A,PARP5B,PARP6-17)(参考文献1,2)。然而,基于结构和功能同源性,PARP酶的“扩展”家族较宽(参考文献1)。Classical PARP enzymes catalyse the cleavage of NAD + to nicotinamide and ADP-ribose units which are transferred to acceptor target proteins, thus inducing protein mono-ADP- ribosylation (MARylation) or poly-ADP-ribosylation (PARylation) that in turn modulate the biological properties of the acceptor proteins (Refs 1 , 3 ).玛丽化和paryation是古老的反应,并且存在于生命的所有领域(细菌,植物,真菌和动物)(参考4)。为了更好地理解ADP-核糖基化所涉及的机制,我们将读者推荐给著名的评论:(参考1,5,6,7,8,9)。PARP酶具有广泛的生理和病理生理任务(参考文献8)。大部分细胞核化归因于PARP1和PARP2(参考文献10,11),并且PARP1和PARP2之间存在很强的结构和功能同源性(参考文献12、13)。最近的研究已经阐明了PARP1和PARP2的单独功能(例如(参考14)),在此我们将描述PARP2和DETIPHER的生物学作用,哪些是PARP2特异性的,哪些是与其他PARP酶共享的。
视网膜细胞瘤肿瘤抑制蛋白(RB)与多种表观遗传试剂酶在物理和功能上相互作用,以控制转录调控,响应复制应力,促进DNA损伤反应和修复以及调节基因组稳定性。更好地了解RB功能的分裂如何影响基因组稳定性的表观遗传调节,并确定此类变化是否代表了RB功能障碍的癌细胞的极低弱点,我们进行了基于成像的筛查以识别表观遗传抑制剂,以识别DNA损伤并促进RB-定位率损害RB的稳定性。我们发现,单独的RB丢失会导致高水平的复制依赖性聚-ADP核糖基化(Par-ylation),并且通过捕获染色质上的PARP Enbyemes来防止在染色质上捕获RB-DE浓缩细胞,从而在未分解的复制应力下进展到有丝分裂的细胞。这些缺陷将高水平的DNA损伤和细胞活力损害。我们证明了这种敏感性是在针对PARP1和PARP2的一批药物中保守的,可以通过重新表达RB蛋白来抑制。在一起,这些数据表明,靶向PARP1和PARP2的药物可能与RB脱氧癌的临床相关。
描述 PARG 敲除 MDA-MB-231 细胞系是一种 MDA-MB-231 细胞系,其中人类 PARG(聚 ADP-核糖糖水解酶)长同工酶(PARG111、PARG102 和 PARG99)已使用 CRISPR/Cas9 基因组编辑从基因上去除,慢病毒编码 CRISPR/Cas9 基因和针对人类 PARG 的 sgRNA(单向导 RNA)。该细胞系已通过基因组测序和蛋白质印迹分析验证。背景聚(ADP-核糖)糖水解酶 (PARG) 是一种分解代谢酶,参与 PARylated 链的降解,释放 ADP-核糖和寡(ADP-核糖)链。 PAR(聚 ADP 核糖基化)稳态由 PAR 聚合酶 (PARP) 家族和 PARG 调节,以响应细胞应激条件,例如 DNA 损伤反应 (DDR)。PARG 活性与炎症、缺血、中风和癌症中的细胞反应有关。PARG 在乳腺癌中过度表达,与肿瘤生长和存活有关。PARG 活性降低可以增强当前癌症疗法(例如化疗和放疗)的效果,使 PARG 选择性抑制剂抑制成为癌症和免疫疗法中一种有前途的方法。MDA-MB-231 是一种源自乳腺腺癌的上皮细胞系,具有突变的 p53。它是 ER(雌激素受体)、HER2 和 E-钙粘蛋白阴性,用作晚期乳腺癌的模型。应用
蛋白质的分泌物蛋白质通过高尔基体从内质网流到质膜到质膜(5)。高尔基体中的分泌囊泡生物发生是涉及膜曲率,货物载荷和囊泡分裂的多步过程。每个步骤均由含有RAB家族成员的多蛋白复合物,ADP核糖基化因子,高尔基磷脂蛋白3(Golph3)和其他效应子(6-8)调节。这些复合物是由跨膜高尔基脚手架锚定在高尔基膜上的,该跨膜脚手架组织了专用于常见任务的客户蛋白(9)。高尔基脚手架蛋白上调,p53损失坐标是分泌驱动因素在p53缺陷型癌细胞中的作用(10,11)。因此,致癌突变通过高尔基体驱动分泌,以配合高尔基体中的分泌囊泡生物发生。鉴于有证据表明,染色体扩增子上的基因合作以协调共同的生物学过程(12),我们在这里假设染色体肿瘤的分泌囊泡生物创造的多阶段过程以建立高度的分泌状态。我们鉴定了一个3Q染色体区域,该区域在不同的肿瘤类型中得到扩增,并编码分泌囊泡生物发生的多个调节剂,包括高尔基脚手架Golgi Golgi积分膜蛋白4(GOLIM4)及其客户蛋白ATP蛋白ATP蛋白ATP蛋白ATP CA 2+
背景:扩张型心肌病 (DCM) 是收缩性心力衰竭的主要原因之一,常具有遗传因素。DCM 发病和进展的分子机制仍不清楚。本研究旨在寻找新的诊断生物标志物,以辅助治疗和诊断 DCM。方法:探索基因表达综合 (GEO) 数据库,提取两个微阵列数据集 GSE120895 和 GSE17800,随后将它们合并为一个队列。在 DCM 组和对照组中分析差异表达基因,然后进行加权基因共表达网络分析以确定核心模块。通过基因显着性 (GS) 和模块成员资格 (MM) 值识别核心节点,并通过 Lasso 回归模型预测四个枢纽基因。在数据集 GSE19303 中进一步验证四个枢纽基因的表达水平和诊断价值。最后,确定了潜在的治疗药物和调节基因的上游分子。结果:绿松石模块是 DCM 的核心模块。鉴定出四个枢纽基因:GYPC(糖蛋白C)、MLF2(髓系白血病因子2)、COPS7A(COP9信号体亚基7A)和ARL2(ADP核糖基化因子类GTPase 2)。随后,通过实时定量PCR(qPCR)检测,枢纽基因在数据集和验证模型中的表达均存在显著差异。还鉴定出四种潜在的调节剂和七种化学物质。最后,成功进行了基因编码蛋白与小分子药物的分子对接模拟。结论:结果表明ARL2、MLF2、GYPC和COPS7A可能是DCM的潜在基因生物标志物。
