摘要 本文详细介绍了如何使用 Rietveld 细化软件 MAUD 评估单相和双相材料的晶体学织构,并将其应用于洛斯阿拉莫斯国家实验室 (LANL) 获得的高压择优取向 (HIPPO) 中子衍射数据和增材制造生产的 Ti-6Al-4V 的电子背散射衍射 (EBSD) 极图。本文解决了 Rietveld 细化和软件操作中固有的许多隐藏挑战,以改善用户使用 MAUD 时的体验。本文对 MAUD 细化过程中的每个步骤进行了系统评估,重点是为任何版本的 MAUD 和任何材料系统设计一致的细化过程,同时也指出了以前开发的流程所需的更新。本文记录并解释了用户可能遇到的许多问题,并进行了多层次评估,以验证任何数据集的 MAUD 细化过程何时完成。还简要讨论了适当的样本对称性,以强调从 MAUD 中提取的纹理数据可能过于简单。本研究的附录中包含了两个应用所述过程的系统演练。这些演练的文件可在以下数据存储库中找到:https://doi.org/10.18434/mds2-2400。
摘要 目的 本研究探讨产科临床医生对人工智能 (AI) 的看法,以弥合研究与医疗实践之间在 AI 应用方面的差距。确定 AI 可以为临床实践做出贡献的潜在领域,使 AI 研究能够与临床医生和最终患者的需求保持一致。设计定性访谈研究。设置 2022 年 11 月至 2023 年 2 月期间在荷兰进行的一项全国性研究。参与者 具有不同相关工作经验、性别和年龄的荷兰产科临床医生。分析定性访谈记录的主题分析。结果 采访了 13 位妇科医生,内容涉及实施 AI 模型的假设情景。主题分析确定了两个主要主题:感知有用性和信任。有用性涉及 AI 扩展人类大脑在复杂模式识别和信息处理方面的能力、减少情境影响并节省时间。信任需要验证、可解释性和成功的个人经验。这一结果显示了两个悖论:首先,人们期望 AI 通过超越人类的能力来提供附加值,但同时也需要了解这些参数及其对信任和采用预测的影响。其次,参与者认识到将众多参数纳入模型的价值,但他们也认为某些背景因素应该只由人类考虑,因为 AI 模型不适合使用这些信息。结论产科医生对 AI 潜在价值的看法凸显了临床医生与 AI 研究人员合作的必要性。信任可以通过随机对照试验和指南等传统方式建立。AI 模型开发应以整体影响指标(例如工作流程的变化而不仅仅是临床结果)为指导。除了传统验证方法之外,还需要进一步研究来评估不断发展的 AI 系统。
图S1。 XRD模式以及(a)TNO,(b)MO 0.125 Ti 0.875 NB 2 O 7.125,(c)mtno,(d)mo 0.5 ti 0.5 ti 0.5 ti 0.5 nb 2 o 7.5,(e)r-tno和(e)r-tno和(f)r-mtno的 XRD模式以及RIETVELD细化分析。 更多详细信息如表S2所示。S1。XRD模式以及(a)TNO,(b)MO 0.125 Ti 0.875 NB 2 O 7.125,(c)mtno,(d)mo 0.5 ti 0.5 ti 0.5 ti 0.5 nb 2 o 7.5,(e)r-tno和(e)r-tno和(f)r-mtno的 XRD模式以及RIETVELD细化分析。 更多详细信息如表S2所示。XRD模式以及RIETVELD细化分析。更多详细信息如表S2所示。
图2在420°C下获得的Na交换TINCL的X射线衍射模式的Rietveld分析(样品A)。开圆显示了观察到的数据点,实线表示计算出的衍射模式。
钛酸钡 (BaTiO 3 ) 是第一种已知的铁电陶瓷,由于其独特的介电、铁电和压电特性而成为各种应用的合适候选材料。众所周知,BaTiO 3 粉末的特性在很大程度上取决于合成路线和热处理条件。在本研究中,通过 Pechini 法使用醋酸钡和钛 (IV)(三乙醇胺)异丙醇水溶液合成了 BaTiO 3 纳米粒子。起始材料在水环境中稳定,并且可以在工业规模上高效制备 BaTiO 3 。通过 X 射线衍射 (XRD)、Rietveld 细化、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、热重分析 (TGA) 和傅里叶变换红外光谱 (FT-IR) 表征了 BaTiO 3 的结构特性。 XRD 和 Rietveld 细化研究表明,BaTiO 3 具有立方结构,空间群为 Pm-3m(#221)。根据 Scherrer 公式估算,在 800ºC 的煅烧温度下,平均晶粒尺寸准确确定为 51.9 nm。粉末的 SEM 显微照片显示 BaTiO 3 晶粒呈圆形,平均晶粒尺寸约为 40-90 nm。关键词:钛酸钡,Pechini,Rietveld,XRD
图4。(a)在室温下测量的Pr 4 Ni 3 O 10的XRD模式,外部压力增加到75.0 GPa。X射线波长λ为0.6199Å。(b)在2.2 GPa时,Pr 4 Ni 3 O 10的典型Rietveld精炼。实验和计算的模式分别由黑星和红线指示。图形底部显示的实线是残余强度。垂直条表示PR 4 Ni 3 O 10在P 2 1 / A空间群中的Bragg反射的峰位置。(c)在24.2 GPA时,典型的Rietveld Pr 4 Ni 3 O 10的细化。实验和计算的模式分别由黑星和红线指示。图形底部显示的实线是残余强度。垂直条表示Pr 4 ni 3 O 10在I 4 /mmm空间组中的Bragg反射的峰位置。(d)(110),(004),(11 4ത),(114),(024)和(22 1ത)峰位置在从Rietveld细化结果中提取的压力下的峰位置的演变。(e)晶格参数a,b和c的压力依赖性在p 2 1 / a(黑色)和i 4 / mmm(红色)空间组中从同步XRD XRD结果中提取的PR 4 Ni 3 O 10。(f)Pr 4 Ni 3 O 10在P 2 1 / A(黑色)和I 4 / MMM(红色)空间组中的体积依赖性。p 2 1 / a相位的三阶桦木拟合方程从2.2 GPa到75.0 GPa,而I 4 / mmm相位为13.7 GPa至75.0 GPa。
图 S1 显示了使用 Amam 和 Fmmm 空间群在 295 K 下测量的 La 3 Ni 2 O 7-δ 多晶样品的 NPD 图案的 Rietveld 细化结果比较。尽管对数据的细化似乎相似,但只有 Amam 对称性才允许反射。2 θ 区域从 40º 到 50º 的 NPD 数据也显示出不对称的 Warren 类峰形,这通常与短程有序有关。
18. 完成了为期两周(14 天)的跨学科 FDP,主题为“使用 Rietveld 细化、微观和成分分析进行结构分析”,该活动由德里大学 Guru Angad Dev 教学学习中心与阿格拉圣约翰学院、Mavelikara 主教摩尔学院、Pathanamthitta 天主教学院、Chalakudy 圣心学院和 Irinjalakudai 基督教学院合作举办,由 Pandit Madan Mohan Malaviya 国家教师和培训使命 (PMMMNMTT) 于 2021 年 9 月 29 日至 2021 年 10 月 13 日举办。
图2。y 3+x al 5-x o 12(0≤x≤0.4)的结构演变得出了SXRD数据的分析。(a)Y 3.4 Al 4.6 O 12(R WP = 8.79%,χ= 1.16)的Rietveld细化具有高角度拟合插图的变焦。Blue tick marks indicate garnet reflections (99.77(2) wt.%), green tick marks indicate perovskite reflections (YAlO 3 , 0.33(2) wt.%) (b) The garnet structure of Y 3.4 Al 4.6 O 12 projected along (100), and a fragment projected along (111) showing the three different cation environments (orange atoms = Y 3+ ; dark blue octahedra = Alo 6;浅蓝色四面体= ALO 4)。(c)具有线性拟合覆盖(实线)的精制晶格参数A,并通过y 3+对16个位点的精制占用率,名义占用覆盖(虚线)。(d)在三种不同的阳离子环境中精制的金属氧距离(m-o)x,在y 3 al 5 o 12(m- o)0时标准化为其值。蓝色三角形=直接结晶样品;洋红色倒三角=玻璃结晶样品。错误栏对应于细化中的10x ESD。
图 6 Li 3(1+ x ) AlP 2 的结构表征 a) 不同退火温度下 Li 3 AlP 2 产物的实验室 XRD。b) 500 ◦ C 退火的微晶 µ c-Li 3(1+ x ) AlP 2 和 c) 300 ◦ C 退火的纳米晶 nc-Li 3(1+ x ) AlP 2 的同步加速器 XRD。d) µ c-Li 2.925 AlP 2 的 Rietveld 细化。e) nc-Li 2.925 AlP 和 f) µ c-Li 2.925 AlP 2 的对分布函数分析。