黑洞是时空的暴力尽头。它们产生的悖论挑战了我们当前的物理理论。最引人入胜的谜题涉及广义相对论和量子理论关于黑洞辐射性质的结论之间的差异。这被称为黑洞信息之谜。根据霍金最初的论证,辐射是热的,因此它的熵会随着黑洞的蒸发而单调增加。相反,量子理论中时间演化的可逆性意味着辐射熵应该在佩奇时间之后开始减少,正如佩奇曲线所预测的那样。这种减少已由基于复制技巧的新计算证实,这些计算还揭示了它的几何起源:在复制品之间形成的时空虫洞。造成佩奇曲线的一般机制称为量子极值曲面 (QES) 处方,它由 QES 的相变捕获,该相变根据贝肯斯坦的广义熵来测量纠缠熵。同时,虫洞的存在表明半经典引力实际上需要一系列微观理论。这种整体解释的可能性目前引起了困惑,并激发了积极的讨论。
本研究引入了一种成本建模架构,用于确定最新连接技术发展的成本效益。铆接是航空航天工业中的传统连接方法,但它是一种耗时、昂贵的工艺,并且会增加结构的重量。作为 JTI Clean Sky 2 联合技术计划的一部分,OASIS 项目(“用于飞机结构部件装配的摩擦搅拌焊接 (FSW) 和激光束焊接 (LBW) 优化”)旨在展示新型连接技术的可行性和成本效益。正在研究的技术是 LBW、FSW 和摩擦搅拌点焊 (FSSW)。物理演示器、模拟研究以及来自 OASIS 项目合作伙伴的行业领先技术专长有助于开发详细的生产流程图并输入准确的流程指标以确定制造成本。为此,我们开发了一种基于活动的成本建模架构来预测连接技术的成本效益,并根据手动和自动铆接解决方案对其进行评估。该模型的设计方式使其能够集成到当前的制造生态系统中,对于大型航空航天公司具有可扩展性,并且能够执行可以根据需要相互集成的多保真度过程成本模型。
课程内容:1。复合材料:基于结构和矩阵的定义,特征,分类,结构,功能感官和智能复合材料,优势和局限性,历史,工业场景和应用。2。增强纤维:高强度人为(玻璃,碳,芳香族等)和天然纤维,结构,特征,特性和应用。3。胡须:特征,属性和应用。4。聚合物基质复合材料(PMC):热塑料和弹性聚合物,它们的性能,特性和用作矩阵。热套,热塑料和弹性体PMC的制造方法。它们的特征特征,制作的复合材料的特性及其应用。5。金属基质复合材料(MMC):用于MMC及其性质的金属,金属金属和合金,MMC的生产,其性质,特征和应用。6。陶瓷基质复合材料(CMC):陶瓷的分类及其作为矩阵的潜在作用。使用精细陶瓷,碳,玻璃,水泥和石膏作为矩阵的陶瓷,制造,性能和应用的超结构处理。7。高级复合材料的分析:微力学 - 微力学 - 失败理论。8。后处理操作:加工,切割,抛光,热塑性PMC的焊接,粘结,铆接和绘画。高级后加工方法,例如超声波焊接,plasmacoating,WaterJet切割和激光加工。
四十多年来,学者们一直在探索贝尔(1974 年)等人首次提出的观点,即从 20 世纪 70 年代开始,美国从以制造商品为根基的福特主义经济转变为以知识生产为根基的知识经济。近年来,学术界对美国知识经济 (AKE) 的兴趣日益浓厚,产生了引人入胜的创新中心政治历史,如加州硅谷和波士顿 128 号公路走廊 (Geismer, 2015; O'Mara, 2019),并质疑 AKE 在产生城乡投票行为差距等现象方面的作用 (Rodden, 2019),并从比较的角度分析了 AKE 与美国政治经济的更广泛研究之间的关系 (Hacker 等人, 2019)。这些研究和许多其他研究的激增使得需要综合该领域的学术工作。与此同时,现有的研究很少明确解决有关知识经济发展的基本问题,例如 AKE 是什么、它何时出现、政府在创建它时发挥了什么作用以及它如何改变了美国社会。在本文中,我将以前的研究综合起来,叙述 AKE 的发展,并针对每个基本问题提出一些初步答案。
摘要:高速铣削是目前航空工业,特别是铝合金工业的重要技术之一。高速铣削与其他铣削技术的区别在于它可以选择切削参数——切层深度、进给量和切削速度,以同时保证高质量的加工表面精度和高的加工效率,从而缩短整体部件的制造过程。通过实施高速铣削技术,可以从全量的原材料中制造出非常复杂的整体薄壁航空部件。目前,飞机结构设计主要由整体件组成,这些整体件是通过在生产过程中使用焊接或铆接技术将零部件连接起来而制成的,例如肋骨、纵梁、大梁、框架、机身盖和机翼等部件都可以归类为整体件。这些部件在铣削后组装成更大的组件。所用处理的主要目的除了确保功能标准外,还在于获得最佳的强度与结构重量比。使用高铣削速度可以通过减少加工时间来经济地制造整体部件,但它也可以提高加工表面的质量。这是因为高切削速度下的切削力明显较低。