港口是物流枢纽,可通过数字技术更新其商业模式,从而减少航运排放(Haraldson 等人,2021 年)并提高效率。港口管理局(PA)——管理港口的公司——越来越多地被视为生态系统整合者或协调者(Caballini 等人,2009 年),这使得它们在引领数字化转型方面发挥着关键作用(Tijan 等人,2021b;von Malmborg,2004 年)。关于港口如何运作的建议层出不穷,倡导技术发展和商业模式创新(BMI)(Verhoeven,2010 年)。我们认为数字化是数字化转型的先决条件,它可以触发 BMI 并为更大规模的演变做好准备。以前的研究仅限于这方面。因此,本研究旨在解决研究空白,并在 BMI 和数字化之间建立联系。
因此,为了计算表1中的加权平均A4体现碳数据,从EPD确定了每种产品的生产设施。随后通过与各种行业供应商的讨论来设计了该生产设施的现实运输情况(例如HGV的生产设施,原产地,原产地港口到英国港口(例如felixstowe),Defra的平均英国艺术旅行数据)。对于英国和爱尔兰的生产以及通过加来(Ropax)到达的材料,英国的距离是北安普敦的,因为这被认为是英国经济活动的中心。
为分析瑞典海上运输部门中对无化石燃料的未来过渡,本研究开发了一种场景建模工具,以评估政策工具的含义,例如欧盟排放贸易体系和Fueleu海上法规。使用单个船舶及其操作模式的数据,该模型估计了在不同情况下船东的最低燃料燃料选择,并计算了由此产生的年度燃料消耗和温室气体排放。方案分析表明,政策工具有可能影响船东的投资选择,但是出现重大影响需要相对较强的价格信号。电池电力推进对于乘客渡轮,ropax船和小型乘客巡航最常见,而渔船和服务船通常在所有情况下都选择延期燃料。选择在船舶细分市场和SCENARIOS之间有所不同,强调在分析政策工具的效果时需要考虑特定于船舶的数据。
这是签署方第二次披露与国际海事组织最新目标相一致的脱碳轨迹的气候一致性分数,该目标旨在到 2050 年左右实现国际航运净零排放。根据国际海事组织在第 80 届海洋环境保护大会上宣布的修订目标,我们修改轨迹的时间非常紧迫,因此在编制 2023 年年度披露报告的过程中,许多客运船舶(仅游轮、渡轮-RoPax、车辆和渡轮-pax)显示出与各自的排放强度轨迹无法解释的错位。在对用于生成这些轨迹的方法进行彻底的内部审查后,发现了一个错误。因此,上述段的轨迹过于严格,即船舶的错位通常被夸大了。在仔细审查和测试后,我们提出并实施了对上述段轨迹的重大更新。各方进一步同意,不必重述整个 2023 年年度披露报告,而是每个签署方可以自由选择报告去年的修订结果。
从船舶和乘客安全的角度来看,持续监测和评估客船的运行脆弱性和事故敏感性至关重要。尽管现有的脆弱性监测解决方案主要来自水密门操作,但文献中缺少事故敏感性评估和监测的综合框架。因此,本文提供了一种直接的方法,利用根植于与人类表现相关的第一原理的坚实基础的启发式方法。所提出的方法可以评估在公海和沿海航行中运行的船舶的事故敏感性。所提出的框架基于可观察和相关因素,这些因素会影响航行员的表现,从而影响事故概率。框架的布局以及所开发模型的参数基于海事和航空领域的文献调查、从海事专家那里获得的知识以及使用内部开发的船舶相遇模拟器进行的广泛模拟。随后,该模型应用于选定的案例研究,涉及两种不同的船舶类型,即大型游轮和 RoPax 船。本文提出的案例研究的结果表明,所分析的船舶在大多数时间里发生事故的可能性可以忽略不计(87%),而 1% 的案例被标记为非常高
BOL 开始使用(参考燃料电池) CAPEX 资本支出 CH3OH 甲醇 CBG 压缩沼气 CNG 压缩天然气 CO 一氧化碳 CO2 二氧化碳 CO2-eq 二氧化碳当量 DF 双燃料 DWT 载重量吨位 ECA 排放控制区 e-fuel 电燃料 EU 欧盟 EV 电动汽车 FAME 脂肪酸甲酯(=生物柴油) FC 燃料电池 FCV 燃料电池汽车 FEED 前端工程设计 FT 燃料 费托燃料 GHG 温室气体 H2 氢气 HCl 氯化氢 HF 氟化氢 HHV 高热值 HVO 氢化植物油(=可再生柴油) ICE 内燃机 IMO 国际海事组织 IRR 内部收益率 LBG 液化生物甲烷 LBSI 稀薄燃烧火花点火(发动机) ICE 内燃机 LH2 液化氢 LCA 生命周期分析 LHV 低热值 LNG 液化天然气天然气 LPG 液化石油气 NOx 氮氧化物 OPEX 运营支出 PEM 聚合物电解质膜 PM 颗粒物 PV 光伏 RED 可再生能源指令 RORO 滚装船 ROPAX 滚装船和客船 SNG 合成天然气
从船舶和乘客安全的角度来看,对客船运行脆弱性和事故敏感性进行持续监测和评估至关重要。尽管现有的脆弱性监测解决方案主要源于水密门操作,但文献中缺少事故敏感性评估和监测的综合框架。因此,本文提供了一种简单的方法,利用根植于与人类表现相关的第一原理的坚实基础的启发式方法。所提出的方法可以评估在公海和沿海航行中运行的船舶的事故敏感性。所提出的框架基于可观察和相关因素,已知这些因素会影响导航员的表现,从而影响事故概率。所开发模型的框架布局和参数基于海事和航空领域的文献调查、从海事专家那里获得的知识以及使用内部开发的船舶相遇模拟器进行的广泛模拟。随后,该模型应用于选定的案例研究,涉及两种不同的船舶类型,即大型游轮和 RoPax 船。本文所介绍的案例研究的结果表明,所分析的船舶在大多数时间的事故敏感性可忽略不计(87%),而 1% 的案例被标记为非常高的事故敏感性。剩余的 12% 分布在事故敏感性的低、中和高值之间。结果与之前在同一领域进行但采用不同方法的研究一致。所提出的解决方案可用作船上决策支持工具,评估操作事故的敏感性和脆弱性,从而提高船员的态势感知能力。此外,它还可以应用于历史数据,允许船舶航行安全诊断和实施适当的对策。
公元前 480 年,雅典人泰米斯托克利在萨拉米斯海战中击败了波斯人薛西斯,这一结果影响了希腊和西方文明的发展。近 2500 年后,即 2014 年,在同一片水域,一艘 8000 TEU 超巴拿马型集装箱船将停靠在埃莱夫塞里奥斯韦尼泽洛斯集装箱码头。这艘船在连接远东和北欧的干线航线上航行。古典时代和第三个千年黎明之间的相似之处,就像三列桨战船和无舱口集装箱船之间的相似之处一样多。但有一件事始终没有改变:作为七大洋之一,地中海在历史和海运业中始终占有重要地位。您手中的这期 (mt) 探讨了该地区在航运和商业中扮演的角色,内容涵盖了整个地中海。事实上,我们的第一个专题探讨了市场需求和基础设施限制如何推动 RoPax 渡轮的设计,以及当前的设计如何应对这些挑战。短途海运要求公司灵活应对,才能成功竞争。了解一家公司如何努力适应港口系统的需求,该系统要求船舶具备特殊的操纵特性,这些船舶在没有拖船、特殊系泊系统或复杂港口基础设施的帮助下频繁停靠港口。在我们的观点和政策简报部分,您可以了解更多有关欧盟短途海运政策的利弊。本期还将介绍地中海门户进行的船舶维修工作,以及位于罗马尼亚海岸的新船舶建造设施——一家多元文化合资企业。展望未来,本期将深入探讨使用液化天然气 (LNG) 作为燃料的潜力。这是一个复杂的话题,尽管欧洲南部所有国家都拥有液化天然气终端,但仍需要行业、立法者和监管机构的共同努力才能实现。我们也很高兴为您带来两位学生和教授对希腊船舶建筑教育的看法,希腊是世界主要船舶拥有国之一。还有更多。我们希望本期杂志能激发您的兴趣,并在您了解地中海地区增长和创新中心时挑战您的思维。
公元前 480 年,雅典人泰米斯托克利在萨拉米斯海战中击败了波斯人薛西斯,这一结果影响了希腊和西方文明的发展。近 2500 年后,即 2014 年,在同一片水域,一艘 8000 TEU 超巴拿马型集装箱船将停靠在埃莱夫塞里奥斯韦尼泽洛斯集装箱码头。这艘船在连接远东和北欧的干线航线上航行。古典时代和第三个千年黎明之间的相似之处,就像三列桨战船和无舱口集装箱船之间的相似之处一样多。但有一件事始终没有改变:作为七大洋之一,地中海在历史和海运业中始终占有重要地位。您手中的这期 (mt) 探讨了该地区在航运和商业中扮演的角色,内容涵盖了整个地中海。事实上,我们的第一个专题探讨了市场需求和基础设施限制如何推动 RoPax 渡轮的设计,以及当前的设计如何应对这些挑战。短途海运要求公司灵活应对,才能成功竞争。了解一家公司如何努力适应港口系统的需求,该系统要求船舶具备特殊的操纵特性,这些船舶在没有拖船、特殊系泊系统或复杂港口基础设施的帮助下频繁停靠港口。在我们的观点和政策简报部分,您可以了解更多有关欧盟短途海运政策的利弊。本期还将介绍地中海门户进行的船舶维修工作,以及位于罗马尼亚海岸的新船舶建造设施——一家多元文化合资企业。展望未来,本期将深入探讨使用液化天然气 (LNG) 作为燃料的潜力。这是一个复杂的话题,尽管欧洲南部所有国家都拥有液化天然气终端,但仍需要行业、立法者和监管机构的共同努力才能实现。我们也很高兴为您带来两位学生和教授对希腊船舶建筑教育的看法,希腊是世界主要船舶拥有国之一。还有更多。我们希望本期杂志能激发您的兴趣,并在您了解地中海地区增长和创新中心时挑战您的思维。