消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
nist.gov › 文档 PDF 2022年12月24日 — 2022年12月24日 使用现有技术并促进工业和工业领域的技术创新... 标准参考材料的研究领域很广泛。
不均匀性对量子材料的特性至关重要,但是可以测量它们的方法仍然有限,并且只能访问相关可观察的一小部分。例如,诸如扫描隧道显微镜之类的局部探针已经证明,在纳米长度尺度上,丘比特超导体的电子特性是不均匀的。但是,需要解决高阶相关性的互补技术以阐明这些不均匀性的性质。此外,局部隧道探针通常仅远低于临界温度。在这里,我们开发了一种二维的Terahertz光谱法,以测量来自近乎掺杂的丘陵中层间间的隧道共振的Josephson等离子体回声。这项技术使我们能够研究材料中层偶联的多维光学响应,并从外部无均匀的无均匀宽扩展中拓宽了材料中的固有寿命扩大,以实现中间层间隧道隧道。我们发现,不均匀的扩展持续到临界温度的很大一部分,而这在高于热量增加的寿命拓宽之上可以克服。
摘要:我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用氢化动力学滴注制造的纳米镜高度的蒽晶体中的掺杂的单二苯甲烷(DBT)分子。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与对散装中同一来宾 - 宿主系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽度相当。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。对于一系列应用,有机纳米和微晶的电水动力印刷是感兴趣的,其中希望对具有狭窄光学转变的量子发射器进行对照定位。关键字:纳米折线,纳米晶,量子发射极,单分子,单光子源,光谱M
摘要。在这篇 Outlook 论文中,我们解释了为什么当通过使用系统生理增强功能性近红外光谱 (SPA-fNIRS) 同时测量系统生理活动(例如心肺和自主神经活动)时,可以促进对功能性近红外光谱 (fNIRS) 神经成像信号的准确生理解释。SPA-fNIRS 的基本原理有两个方面:(i) SPA-fNIRS 能够更完整地解释和理解在头部测量的 fNIRS 信号,因为它们包含源自神经血管耦合和系统生理源的成分。用 SPA-fNIRS 测量的全身生理信号可用于回归 fNIRS 信号中的生理混杂成分。因此可以最大限度地减少误解。(ii) SPA-fNIRS 能够通过将大脑与整个身体的生理状态联系起来来研究具身大脑,从而对它们复杂的相互作用产生新的见解。我们预计 SPA-fNIRS 方法在未来将变得越来越重要。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。全部或部分分发或复制本作品需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.030801]
图1。CH 4 -N 2覆盖物的实验设置可在低压(18 MPa)和低144温度(256 K±4 K)条件下进行合成。杂质在连接到145冷却系统的高压高压灭菌器中合成。由控制气体混合控制台,热质量流量146控制器,手动球阀,螺线管阀和气动压缩机组成的多气体混合系统允许在N 2 -CH 4中制备14777777777均匀的反应气体混合物,范围为4 mol%CH 4至95 mol%CH 4。通过分析可覆盖分离的气相来确定148个组合物,这要归功于Rolsi Micro-Smpampler/Impotor的149个直接气体注射到与热150电导率检测器(GC-TCD)相连的气相色谱仪的直接气体注入。151 152
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
荧光显微镜是细胞生物学1 - 3中普遍存在的表征技术。活细胞的荧光标记不仅可以专门突出生物分子,细胞器或细胞室,还可以绘制物理化学量,例如离子浓度,动作电位,pH,pH,分子方向等。在过去的二十年中,荧光显微镜经历了深刻的改进,并开发了许多变体,从而在空间分辨率,速度,信号噪声比率,特异性,标记技术和3D成像方面推动了成像的极限。然而,荧光显微镜受到限制。它本质上仍然是侵入性的,因为它需要用分子染料或蛋白质4将样品标记。此外,由于荧光标签的光漂白和光吸毒性,无法任意长时间进行实时观察。最后,荧光分子并不总是忠实地标记它们应该的内容,而伪影有时会发生5。定量相显微镜(QPM)是另一个专门针对细胞生物学领域6、7的成像技术家族。与荧光显微镜不同,QPM技术不含标签且非特异性。它们仅对样品的折射率敏感。他们的主要好处是与明亮的场显微镜相比,提供更好的对比度。由于QPM不含标签,因此它们不会遭受与荧光显微镜相关的上述缺陷。但是,QPM本质上不是特定的。此外,生物学介质的折射率和质量密度之间存在的密切关系为QPM提供了QPM的独特能力,可以测量和映射培养物中细胞的质量,从而实现细胞生长的定量监测,以及在第8-11级的亚细胞级别的质量转运。尤其没有任何分子探针的光漂白,并且如果使用红色或红外照明,可以取消光毒性,以非侵入性的方式使图像获取为任意长时间的习得12。一个人无法选择细胞的功能来突出显示,尽管最近一些涉及机器学习的作品试图提高此限制13,14。荧光显微镜和QPM因此以互补方法的形式出现,并将它们结合起来提供多种好处。OPD图像显示的细节在荧光图像中无法看到,反之亦然。OPD揭示了细胞中的所有内容,尤其是细胞的部分未荧光标记的部分。例如,它可以清楚地突出片状膜,核,囊泡或线粒体。相反,荧光受特异性受益,因为它仅突出显示细胞中标记的物体,尤其是对比度太低的对象,无法在OPD图像上看到。然而,荧光显微镜和QPM很少相关。然而,将荧光显微镜与QPM技术偶联至少具有三个重要应用:(i)它将提供生物分子或细胞器的空间分布(例如微管,肌动蛋白,线粒体等)或物理化学参数与细胞的总体形态相关,并具有出色的对比度,包括细胞的微弱部分,例如层状脂肪膜。我们设想重要的应用,例如在细胞内贩运研究中;
通过采用生成AI模型,只需一次一次接触即可获得使QPI对生物医学应用吸引的必要图像质量。该团队于2月下旬举行的AI促进协会(AAAI 2025)于今年在费城组织的AI协会的第39届AI年会。相应的会议论文可在Arxiv预印式服务器上找到。
摘要:对称性破裂在化学转化中无处不在,并影响材料和分子的各种物理化学特性。 Jahn- teller(JT)六a型过渡金属 - 配体配合物的变形属于该范式。退化的3D轨道的不均匀占用迫使复合物采用轴向拉长或压缩的几何形状,从而降低系统的对称性并提升退化。已知Cu 2+的配位复合物表现出轴向伸长,而压缩却不那么普遍,尽管这可能是由于缺乏严格的实验验证。在这里,我们介绍了原型[Cu(2,2'-Bipyridine)3] 2+离子复合物的气相振动光谱,该复合物是通过使用广泛可调的IR ir Freectron Laser Laser Laser Laser Laser Laser Laser Felix获得的红外多光子分离(IRMPD)光谱。在理论的密度功能水平上预测的振动光谱几乎但对于两个JT延伸的几何形状而言并不完全相同。我们比较了实验和理论光谱,并解决了气态离子种群中复合物或其混合物的轴向拉长或压缩几何形状的问题。■简介