每年,在世界各地的医院中都会获得数百万次脑电磁共振成像(MRI)扫描。这些有可能彻底改变我们对许多神经系统疾病的理解,但是由于它们的各向异性解决方案,它们的形态分析尚未实现。我们提出了一种人工智能技术,即“合成器”,该技术对任何MR对比度进行临床大脑MRI扫描(T1,T2等。),方向(轴向/冠状/矢状),并分辨出来,并将它们变成高分辨率T1扫描,这些T1扫描几乎可以通过所有现有的人类神经影像工具使用。我们介绍了> 10,000张对照和脑肿瘤,中风和阿尔茨海默氏病的对照组和患者的分割,注册和地培训的结果。合成子产生的传奇结果与高分辨率T1扫描所能获得的非常高度相关。Synthsr允许样本量有可能克服前瞻性研究的功率限制,并为健康和患病的人脑提供了新的启示。
摘要 - 阿尔茨海默氏病(AD)是痴呆症最为流行的形式,比前列腺癌和乳腺癌杀死更多的人。结构磁共振成像(SMRI)广泛用于分析进行性脑部加重及其在区分AD方面的临床实用性。即使尚不存在有效治愈,早期发现对于减轻症状恶化的速度也是至关重要的。因此,本工作的目的是提出端到端3D卷积长的短期记忆(ConvlSTM)的基于全分辨率全分辨率全脑SMRI扫描的AD的框架。提出的框架应用于属于OASIS和ADNI数据库的427个全分辨率全分辨率全分辨率SMRI扫描,以提供较少的数据集特定于方法。的结果表明,我们的框架在区分AD的框架与认知上的Normal(CN)患者方面表现良好,达到86%的分类精度,敏感性为96%,F1评分为88%,AUC为88%,AUC的AUC为93%。测试是在可扩展的GPU云服务上进行的,并可以公开使用以保证可重复性。由于所提出的框架在没有AD的领域特定知识以及计算成本的过程(例如分割)的情况下表现良好,因此可以使用全脑SMRI扫描作为输入数据将其应用于其他精神疾病。索引术语 - Alzheimer病,深度学习,诊断,端到端方法,可扩展的GPU云,结构磁共振成像,3D卷积长的短期记忆
尽管磁共振成像 (MRI) 等诊断成像技术的进步使人们对阿尔茨海默病 (AD) 的诊断和治疗有了更深入的了解,但医疗专业人员仍然需要分析图像,这是一个耗时且容易出错的过程。借助神经网络模型,可以更准确、更有效地做出诊断。在本研究中,我们比较了三种著名的基于 CNN 的算法(AlexNet、Faster R-CNN 和 YOLOv4)的性能,以确定哪一种算法在对 AD 患者的脑部 MRI 扫描进行多类分类时最准确。所使用的数据集来自 Kaggle,包含 6400 个训练和测试 MRI 图像,分为四个类别(非痴呆、非常轻度痴呆、轻度痴呆和中度痴呆)。中度痴呆类别的代表性极低。为了获得更准确的结果,通过数据增强将图像添加到该类别中。实验是使用 Google Colab 的 Tesla P100 GPU 进行的。迁移学习应用于所有三个预训练模型,并根据各自的参数调整数据集。增强后,AlexNet 具有最高的 mAP(平均准确率),100% 的时间检测到感兴趣的对象,而 YOLOv4 和 Faster R-CNN 的 mAP 分别为 84% 和 99%。然而,YOLOv4 在混淆矩阵上表现最佳,尤其是对于 ModerateDemented 图像。正如我们的实验所揭示的,像 YOLOv4 这样的单阶段检测器比像 Faster R-CNN 这样的两阶段检测器更快、更准确。我们的研究成功实现了这些模型,并为医学图像诊断做出了宝贵贡献,为未来的研究和开发开辟了道路。
背景和目标:阿尔茨海默病约占痴呆症病例的 70%。从 T1 加权结构磁共振扫描中可以轻松发现阿尔茨海默病引起的皮质和海马萎缩。由于在综合征的初期及时进行治疗干预对患病对象的病情进展和生活质量都有积极影响,因此阿尔茨海默病的诊断至关重要。因此,本研究依赖于开发一个强大而轻量级的 3D 框架 Brain-on-Cloud,该框架致力于通过改进我们最近的基于卷积长短期记忆的框架,并集成一组数据处理技术,以及调整模型超参数并评估其在独立测试数据上的诊断性能,从 3D 结构磁共振全脑扫描中有效学习与阿尔茨海默病相关的特征。方法:为此,在可扩展的 GPU 云服务上进行了四次连续实验。对它们进行比较,并调整最佳实验的超参数,直到达到最佳性能配置。同时,设计了两个分支。在 Brain-on-Cloud 的第一个分支中,在 OASIS-3 上进行训练、验证和测试。在第二个分支中,使用来自 ADNI-2 的未增强数据作为独立测试集,并评估 Brain-on-Cloud 的诊断性能以证明其稳健性和泛化能力。计算每个受试者的预测分数,并根据年龄、性别和简易精神状态检查进行分层。结果:在最佳状态下,Brain-on-Cloud 能够分别在 OASIS-3 和独立 ADNI-2 测试数据上以 92% 和 76% 的准确率、94% 和 82% 的灵敏度以及 96% 和 92% 的曲线下面积辨别阿尔茨海默病。结论:Brain-on-Cloud 是一种可靠、轻量且易于复制的框架,可用于通过 3D 结构磁共振全脑扫描自动诊断阿尔茨海默病,无需将大脑分割成各个部分即可表现出色。在保留大脑解剖结构的情况下,其应用和诊断能力可以扩展到其他认知障碍。由于其云特性、计算轻量和执行速度快,它还可以应用于实时诊断场景,提供及时的临床决策支持。
建立的用于诊断肩cap骨骨折的成像方法是X射线,骨扫描,磁共振成像(MRI)和计算机断层扫描(CT),MRI是裂缝检测最敏感和最具体的方法。CT也具有很高的特异性,但灵敏度较低。但是,它通常比MRI更优于MRI,因为它更便宜且更容易获得(1,4,5)。高分辨率外围定量计算机断层扫描(HR-PQCT)代表检测scaphoid骨折的创新选择(6-8)。由于第一个结果直到最近才发布,因此在该领域尚未广泛建立其使用。最初,HR-PQCT旨在测量骨密度并量化骨骼的三维微构造(9)。由于几个原因,包括技术问题,扫描获取和评估缺乏标准化以及与成本相关的有限可用性,其临床价值仍处于边缘状态(10)。然而,近年来,HR-PQCT在许多科学领域都取得了重大进展,例如,在评估流变学疾病对关节表面的影响(11,12)(11,12),骨骼微体系结构和骨骼强度对次生骨质骨的骨骼和代谢性骨骼的影响(10),以及对骨骼的影响(10)的作用,以及对骨骼的效果,以及对骨骼的效果(均具有抗抗病性的作用)(均具有抗抗病性的作用(愈合(14-16)和远端半径裂缝机制的研究(17,18)。
不均匀对比度评分 (ICR) 优化 WM 段内的全局标准偏差,并通过最小问题对比度进行缩放;从 A+(质量优秀到 F 不可接受/质量失败)评分 均方根分辨率 (RES) 体素大小的均方根值;从 A+(质量优秀到 F 不可接受/质量失败)评分 加权平均图像质量评分 (IQR)
摘要 — 由于组织外观的变化,包含病理的纵向脑磁共振成像 (MRI) 扫描的配准具有挑战性,这仍然是一个未解决的问题。本文介绍了第一个脑肿瘤序列配准 (BraTS-Reg) 挑战,重点是估计同一患者被诊断为脑弥漫性胶质瘤的术前和随访扫描之间的对应关系。BraTS-Reg 挑战旨在为可变形配准算法建立一个公共基准环境。相关数据集包括去识别化的多机构多参数 MRI (mpMRI) 数据,根据通用解剖模板针对每次扫描的大小和分辨率进行整理。临床专家已经对扫描中的标志点生成了大量注释,描述了时间域内不同的解剖位置。训练数据以及这些基本事实注释将发布给参赛者,以设计和开发他们的注册算法,而验证和测试数据的注释将由组织者保留,并用于评估参赛者的容器化算法。每个提交的算法都将使用几个指标进行定量评估,例如中位数绝对误差 (MAE)、稳健性和雅可比行列式。
摘要:脑肿瘤是最致命的疾病之一,对人类健康有许多影响。脑肿瘤是脑内或脑周围的异常细胞团或生长。它们并非都是癌症,因为它们可能是良性的或恶性的。医生使用各种诊断技术来评估良性或恶性脑肿瘤的存在,以及估计其大小、位置和生长速度。使用适当的诊断方式来提供完整的大脑视图以检测任何异常。应对脑部进行计算机断层扫描 (CT) 扫描以检查异常。CT 扫描的好处包括准确检测钙化、出血和骨骼细节,以及与磁共振成像 (MRI) 相比成本低。因此,我们研究了一种基于 CT 的检测方法,以确定是否存在脑肿瘤。所提出的方法适用于从曼苏拉大学医院收集的 CT 图像数据集。使用不同的预训练模型:VGG-16、ResNet-50 和 MobileNet-V2。对比结果,预训练模型 MobileNet-V2 尽管参数数量最少,但结果却更好。它的准确率为 97.6%,而其精确度、召回率和 F1 分数分别为 96%、95% 和 96%。
1美国威斯康星大学麦迪逊分校2美国康奈尔大学康奈尔大学的民用与环境工程3霍普金斯极限材料研究所,约翰·霍普金斯大学,美国4汤吉大学地理技术和地下工程的主要实验室,
抽象的脑损伤(TBI)不仅是急性疾病,而且是长期后果的慢性疾病。颅内血肿被认为是INTBI发生的主要后果,并可能具有毁灭性的作用,可能会导致大脑质量影响,并最终导致继发性脑损伤。在计算机断层扫描(CT)扫描中对血肿的紧急检测以及三个主要决定因素的评估,即位置,体积和大小至关重要任务。本文对医学和技术文献进行了比较回顾,以更新和建立证据,以表明如何正确利用技术来提高紧急情况下临床工作流量的效率。从2013年至2023年在PubMed和Google Scholar的电子数据库中进行了系统和全面的文献搜索,以确定与颅内出血(ICH)自动检测有关的研究。纳入和排除标准被设定为最相关的文章。我们确定了15项有关使用头部CTSCAN的计算机辅助筛选和分析算法的开发和验证的研究。我们的审查表明,AI算法可以优先考虑放射学工作列表,以减少在头部扫描中筛选ICH的时间,并且还可以识别放射学家所忽略的微妙ICH,并且自动化ICH检测工具将有望在常规临床实践中引入介绍。