• 用于建立细胞系的细胞最初是从家养约克夏猪的皮下腹部脂肪组织活检中分离出来的。分离的细胞使用已验证其预期用途的标准方法(包括显微镜检查)进行表型鉴定。• 细胞系是通过选择性培养贴壁细胞,使其从含血清培养基生长到无血清培养基,经过几代(传代)培养而建立的。使用猪特异性聚合酶链式反应 (PCR) 检测来验证物种身份,并通过核型分析(正常染色体扩散)来评估遗传稳定性。• 细胞的培养方式如下:首先在贴壁培养增殖期增加细胞总数,然后进入细胞育肥期,在此阶段,细胞在特定培养基因子的诱导下形成细胞内脂滴。• 通过添加收获液分离细胞、离心、清洗,并在温控环境下储存在无菌容器中。 • 清洗后收获的材料被描述为培养的猪肉(Sus scrofa domesticus)脂肪细胞,其脂肪酸含量与传统猪肉脂肪产品相似。并提供了微生物、毒性重金属和微量金属的规格。• 我们评估了有关细胞系、生产工艺(包括建立细胞库)、生产过程中使用的物质以及收获的细胞材料特性的信息,包括可披露的安全叙述中提供的信息以及补充保密材料中支持性佐证信息。• 根据 CCC 000008 中提供的数据和信息,我们目前对 Mission Barns 的结论没有任何疑问,该结论认为,由 CCC 000008 中定义的生产工艺产生的培养猪肉脂肪细胞材料构成或含有该材料的食品与通过其他方法生产的同类食品 1 一样安全。此外,我们尚未发现任何信息表明所述生产工艺
对心血管系统疾病的研究越来越多地在动物模型中进行。猪是生物医学研究中常见的模型动物。本研究的目的是确定雄性和雌性猪(Sus scrofa domestica)心脏的正常超声心动图值。本研究使用的猪为本研究中使用的猪12头,年龄为3至4个月,平均体重为55公斤(52至69公斤)。使用频率为 2.5-6.0 MHz 的相控阵探头换能器对麻醉状态下的猪进行右胸骨旁 (RPS) 长轴 (LAx) 和短轴 (SAx) 位置的经胸超声心动图检查。 RPS-SAx 位置旨在评估猪心脏左心室的形状和结构,而 RPS-LAx 位置旨在比较心室之间的尺寸并观察心脏二尖瓣的运动。超声心动图检查结果显示,可以看到猪左心室的结构有室间隔(IVS)、左心室(LV)、左心室壁(LVW)、心包(P)、乳头肌(PM)、右心室(RV)。研究结果显示,心率(HR)、舒张末期左室内径(LVIDd)、每搏输出量(SV)参数的数值在男性和女性之间表现出显著不同的结果,而其他参数的结果不显著。这些猪的正常心脏超声值可以作为以猪为动物模型进行进一步心血管研究的参考。
摘要:利什曼病是由利什曼原虫引起的一组疾病,通过雌性沙蝇叮咬传播。本研究在两个地区进行描述性研究:一个位于多西河州立公园的森林地区,另一个位于蒂姆奥特奥-MG 市的城市地区,目的是确定利什曼原虫的存在和收集的雌性沙蝇的血液来源。一部分雌性沙蝇来自多西河州立公园,另一部分雌性沙蝇使用分布在蒂姆奥特奥住宅区的 19 个光诱捕器收集。对于利什曼原虫 DNA 的分子研究,使用了 ITS1 基因,在寻找血液来源时,使用了 CytB 基因并对阳性样本进行了测序。研究表明,研究区域内至少存在三种利什曼原虫:利什曼原虫(Viannia)巴西利什曼原虫、利什曼原虫(Leishmania)亚马逊利什曼原虫和利什曼原虫(V.)圭亚那利什曼原虫。Nyssomyia whitmani 是 Tim ó teo 市区的主要沙蝇种类,经诊断,该沙蝇中存在利什曼原虫 DNA。我们在沙蝇体内发现了鸡和猪的血液。本研究表明,巴西利什曼原虫是研究区域皮肤利什曼病的主要病原体,而惠特曼尼白蛉(Nyssomyia whitmani)作为媒介的有效参与,以及鸡(Gallus gallus)和野猪(Sus scrofa)都是雌性白蛉的食物来源,有助于维持白蛉的生命。
图 1 人类与非人类物种之间共享的基因。系统发育树标注了每个物种中具有 1:1 直系同源物的人类基因百分比(以数字和每个圆圈的填充比例显示)。与人类共享的 1:1 直系同源物的绝对数量绘制为每个圆圈的颜色。使用 orthogene R 包构建。92 关键词:Anolis carolinensis,绿变色蜥;Bos taurus,牛;Caenorhabditis elegans,蛔虫;Canis lupus familiaris,狗;Danio rerio,斑马鱼;Drosophila melanogaster,果蝇;Equus caballus,马;Felis catus,猫;Gallus gallus,鸡;Homo sapiens,人类;Macaca mulatta,恒河猴;Monodelphis domestica,灰色短尾负鼠;小家鼠 (Mus musculus),家鼠;鸭嘴兽 (Ornithorhynchus anatinus),鸭嘴兽;黑猩猩 (Pan troglodytes),黑猩猩;褐家鼠 (Rattus norvegicus),褐家鼠;酿酒酵母 (Saccharomyces cerevisiae),面包酵母;粟酒裂殖酵母 (Schizosaccharomyces pombe),裂殖酵母;野猪 (Sus scrofa),猪;热带爪蟾 (Xenopustropicalis),西方爪蟾。
非洲猪发烧(ASF)是由Asfiviru属的DNA病毒引起的野猪和家养猪(SUS SCROFA)的可传播致命感染(家族Asfarviridae; Gabriel等人; Gabriel等人。2011)。研究表明,在欧洲,传统的传输路线涉及Ornithodoros属的血液滴答tick虫在ASF感染周期中不起作用(Pietschmann等人。2016)。相反,动物是通过与其他受感染动物或受污染的尸体,食物或设备直接接触而感染的(Gaudreault等人。2020)。尽管对人们无害,但该病毒可能会产生重大的经济影响。尽管进行了持续研究2019,Gaudreault等。2020)将控制措施限制在感染的早期发现,健康与患者的身体分离以及对感染动物的淘汰(欧洲食品安全局,2014年,Jurado等人2018)。
1 Scand-LAS Education and Training Committee Practical training without and with animals – From dummies to live animals......................................................28 Åsa Holmberg Wenell • Karolinska Institute, Sweden Training animals to participate and the construction of a training set up ............................................................29 Stine Drent • Novo Nordisk, Denmark Wild fish as experimental animals: research and conservation viewpoints...........................................................30 Jenni Prokkola • Natural Resources Institute Finland (Luke), Finland GPS-tracking of wild boar (Sus scrofa) – room for refinement?...............................................................................31 Elmo Miettinen 1,2 , Mervi Kunnasranta 1 , Anna Meller 2 • 1 Natural Resources Institute Finland, 2 University of Helsinki, Finland Using wild birds as model predators to study predator-prey coevolution............................................................32 Liisa Hämäläinen • University of Jyväskylä, Finland Is the EC Educational and Training Framework adapted for wildlife researchers?...............................................33 Siri Knudsen • Norwegian University of Life Sciences, Norway Quality management systems and accreditation standards in laboratory animal research facilities.................34 Emrah Yatkin • University of Turku, Finland Strategic quality assessment: A multi-level feedback system for improved management of animal facilities..35 Jussi Helppi • Max Planck Institute of Molecular Cell Biology和遗传学,德国如何减少整个研究周期中的累积苦难? microbiome on animal models – An overview ...........................................................................38 Axel Kornerup Hansen • University of Copenhagen, Denmark
摘要:过去几十年来,基因工程的进步使得开发出生产转基因动物的方法成为可能。转基因技术的发展为研究开辟了新的方向,也为其实际应用创造了可能性。生产转基因动物物种不仅旨在加速传统的育种计划,改善动物健康和食用动物产品质量,还可用于生物医学。动物研究旨在开发用于基因功能和调控研究以及某些人类疾病的遗传决定因素的模型。本综述中描述的另一个研究方向侧重于使用转基因动物作为高质量生物制药(如重组蛋白)的来源。讨论的另一个方面是使用转基因动物作为细胞、组织和器官的来源,以移植到人类受体中,即异种移植。许多研究表明,猪(Sus scrofa domestica)是最适合作为人类疾病研究模型和异种移植的最佳器官供体的物种。与其他牲畜相比,转基因猪的怀孕期短、世代间隔短和产仔数高使得转基因猪的生产耗时更少。本综述介绍了用于生物医学研究的转基因猪以及猪动物模型使用的未来挑战和前景。
布鲁氏杆菌是一种广泛存在于世界各地的病原体,由于其人畜共患潜力及对动物生产的经济影响,与公共卫生密切相关。家猪布鲁氏杆菌病是由猪布鲁氏杆菌生物变种 (bv) 1-3 引起的,在较小程度上由羊型布鲁氏杆菌和流产布鲁氏杆菌引起。36,47 猪布鲁氏杆菌的宿主范围、地理分布和致病性因生物变种而异:猪布鲁氏杆菌 bv 1 和 3 是人畜共患的,主要存在于美洲、亚洲、大洋洲,偶尔也存在于欧洲,影响多种动物,特别是猪科,但也影响人类、牛、马和狗。2,8,9,26,32,33 相比之下,猪布鲁氏杆菌 bv 2 仅分布于欧洲,人畜共患潜力有限,但它威胁着欧洲的养猪生产,并可感染牛。 12,36 野猪 (Sus scrofa) 和欧洲兔 (Lepus capensis) 是 B. suis bv 2 的宿主,似乎与向大规模养殖猪的传播有关。47 B. suis bv 4 感染驯鹿 (Rangifer tarandus)、北极狐 (Vulpes lagopus)、北极狼 (Canis lupus arctos)、牛(不会引起疾病)和人类。15,47 B. suis bv 5 感染啮齿动物。39
背景:日本脑炎病毒(JEV)是一种蚊子 - 裔人的人畜共患病毒病毒,是亚洲太平洋地区小儿脑炎的主要原因。传输周期主要涉及Culex spp。蚊子和Ardeid鸟类,家养猪(Sus scrofa housea)是从自然流行传播周期进入人口的JEV溢出的传染病来源。尽管许多研究得出的结论是,家猪在JEV的传播周期和人类感染中起着重要作用,但野猪在JEV传播中的作用尚不清楚。由于国内和野性猪是同一物种,并且由于在美国的野猪种群在地理上增加和扩展,因此目前的研究旨在检验以下假设:如果将JEV引入美国,则野猪可能在传输周期中起作用。材料和方法:表现出野性表型的Sinclair微型猪被JEV基因型IB内接种。这些猪是从与四个野猪菌株的交叉杂交家用猪中得出的,并且由于无法获得野猪而被使用。结果:Sinclair微型猪开始了病毒,并显示出与家养猪相似的病理结局。结论:基于这些发现,我们得出结论,如果将JEV引入美国,野猪种群可能有助于建立和维持JEV的传播周期,并可能导致该病毒在美国流行。