许多分析计算都由迭代处理阶段主导,一直执行到满足收敛条件为止。为了加速此类工作负载,同时跟上数据的指数增长和 DRAM 容量的缓慢扩展,Spark 采用了内存外缓存中间结果。然而,堆外缓存需要对数据进行序列化和反序列化(serdes),这会增加大量开销,尤其是在数据集不断增长的情况下。本文提出了 TeraCache,这是 Spark 数据缓存的一个扩展,它使用内存映射 I/O(mmio)将所有缓存数据保留在堆上但不在内存中,从而避免了对 serdes 的需求。为了实现这一点,TeraCache 使用托管堆扩展了原始 JVM 堆,该托管堆驻留在内存映射的快速存储设备上,专门用于缓存数据。初步结果表明,与最先进的 serdes 方法相比,TeraCache 原型可以将缓存中间结果的机器学习 (ML) 工作负载加快多达 37%。
- 仅由Serdes限制的车道速率(例如RTG4上的3.125 Gbps) - 对于整个温度和电压范围(即) 快速和慢速弯道) - 使用EDAC和SET过滤器 - 不需要特定的放置或定时限制。 - 即使超过80%的FPGA利用率RTG4上的3.125 Gbps) - 对于整个温度和电压范围(即快速和慢速弯道) - 使用EDAC和SET过滤器 - 不需要特定的放置或定时限制。- 即使超过80%的FPGA利用率
Alphawave半决赛通过完整的子系统互连性IP和自定义计算解决方案加速了连接的世界,alphawave半设计行业领先,高速连接解决方案,用于高增长最终市场的客户,包括数据中心,AI,AI,5G无线基础设施,数据网络,数据网络,自动固有的车辆和固体稳定性。我们的领先技术进步推动了有线连接功能的界限,使数据能够更快,更可靠地传播,并使用较低的功率。Zeuscore™MSS IP支持线性可插入光学元件Alphawave Semi Zeuscore™是Xtra-Long-Reach(XLR,LR,MR,VSR),基于DSP的,基于DSP的,多标准Serdes(MSS)IP。这是一个高度可配置的SERDES IP,它支持从1GBPS到112Gbps的所有前沿NRZ和PAM4数据中心标准,最多可用于43 dB颠簸颠簸损失频道。该IP在硅中被证明在前沿过程节点(7nm,6nm,5nm,4nm,3nm)中,并准备好可用于客户磁带。关键功能:
摘要 - DATA密集型应用程序(例如人为的说明性和图形处理)变得司空见惯,需要高速IO才能部署这些关键应用程序。为了适应增加的数据需求序列化器/求职者(SERDES)接收器变得越来越复杂,具有不同的均衡方案来减轻通道障碍。对此接收器进行建模,因为它们是至关重要的。本文显示了一种通过生成网络进行固定和变化均衡的高速接收器瞬态建模的方法。该方法将接收器视为黑匣子,其输入和输出是两个不同的域,将问题作为域转换任务构图。所提出的方法使用时间序列的中间表示,成功地对接收器建模。我们证明所提出的方法是输入波形,接收器配置和通道不变的。在固定的均衡设置中,所提出的方法在[0,1]范围内的根平方误差为0.016,对于可变还原剂的同一范围内的误差为0.054。该方法可以在250ms以下预测一组批处理的结果,比同等时间步骤的等效香料模型快。索引项 - DATA驱动,生成,宏模型,Serdes,瞬态
然而,除了高速串行链路 (HSSL) 应用之外,光子处理(在微波光子学的范围内)是彻底改变 RF 信号板载处理方式的重要候选技术。主要优点:✓ 可以以低功耗处理大量带宽(如 RF;与数字不同)。✓ 高动态范围(如 RF;与数字不同)✓ 光子处理元件可以在不同频段重复使用,甚至可以用于光馈线(如数字;与 RF 不同)✓ 重量轻、灵活的互连(如数字(光学 SERDES);与 RF 不同)
卫星串行链路用于更高的数据吞吐量和更高频率的电信有效载荷,这需要更多地使用机载计算机处理,因此光学互连成为卫星上数字有效载荷的首选解决方案。特别是,数据速率的增加加剧了与电气域互连相关的挑战,其中传输距离随着比特率的增加而显著缩短。这既限制了 ASIC 的 SerDes 通道的覆盖范围,也导致需要更复杂的调制格式和更多的 DSP,这两者都会导致功耗增加。光学互连还受益于重量减轻和对 EMI 的免疫力。到目前为止,卫星有效载荷的光学收发器一直专注于基于中板 VCSEL 的技术,第一代收发器的速度为 12.5 Gb/s 1 已在轨道上演示,第二代设备的目标是 25 Gb/s,预计将在下一步演示。然而,与地面数据中心的趋势类似,数据速率现在正在增加到对直接调制 VCSEL 具有挑战性的水平,而转向 O 波段和 C 波段更常见的通信波长也带来了许多优势。共封装光学器件 (CPO) 是地面数据中心应用的新兴标准,有机会为卫星有效载荷采用类似的架构。CPO 的目标是将光收发器集成到非常靠近功能性 ASIC/FPGA 的位置,从而能够使用功率较低的短距离 SerDes 并促进更高数据速率的传输,同时保持信号完整性并减轻 EMI 效应。通过 ESA 合同“ProtoBIX”,MBRYONICS 和 imec 正在开发一种基于硅光子的收发器,该收发器从头开始设计,用于部署在卫星有效载荷上。共封装方法采用单独的 Rx 和 Tx 光子集成电路 (PIC),以实现电吸收调制器 (EAM) 和光电二极管 (PD) 的高性能。 EAM 的优势在于它们比环形调制器具有更大的光带宽,而且与基于环形谐振器的设计相比,它们不需要波长调谐。Tx 和 Rx PIC 在 imec 的 iSiPP200 平台上制造,而定制的抗辐射调制器驱动器则在 IHP SG13RH SiGe BiCMOS 工艺 2 上设计和制造。收发器使用 NRZ 调制时的数据速率为每通道 56 Gb/s。通过详细分析,NRZ 格式被选为最有前景的格式,因为它允许使用直接驱动概念,其中 ASIC/FPGA SerDes 驱动调制器驱动器并消除了 CDR 和重定时,同时也消除了对 DSP 的需求。此外,与 56 GBd NRZ 相比,28 GBd PAM4 所需的线性度会导致显著的功率损失。
对带宽密度和功率效率的需求不断提高,促进了多项研究工作,以开发光学I/O,作为全电动I/O用于高性能和数据密集型计算的替代方案。将光学I/O迁移到XPU/ASIC/FPGA软件包更靠近,可以以节能方式传递必要的带宽。硅光子学(SIPH)非常适合满足该应用的挑战性要求,因为其集成和制造性很高。普遍认为,由于其较小的占地面积和谐振性,微孔调节器(MRM)是带宽密度缩放的关键组成部分,这使其自然地适合密集波长划分多路复用(DWDM)技术,这是满足这些出现的带宽要求的关键[1,2]。光学I/O的其他关键组件包括高速光电探测器,DWDM激光源和共同设计的CMOS电子IC(EIC),可提供所有所需的接口电路(SERDES,驱动程序,MRM Control,TIA等))。
PCB 设计 PCB 尺寸:~ 182mm x 424mm (宽 x 长) PCB 厚度:3.52±10% (~137 Mils) PCB 材料:日立 LW910G、HE679G(极低损耗、低 Dk、无卤素) 估计功耗:~450W 环境温度:最高 35°C Mellanox SoC 详细信息 (MT54240A0-FCCR-H) 封装类型 HFCBGA 总引脚数:3124 重量 61 克 尺寸 57.5 mm x 57.5 mm 球数 3124 球距 1 mm 球尺寸 0.6 mm 近似 ASIC 引脚分布详细信息:电源引脚:~ 40 模拟电源引脚:~90 接地引脚:~90 高速网络:~ 656(40 四 (4x) SerDes 56 Gbps PAM4, 4 PCI Express 3.0 通道)电源网络详情 VDD 0.85V VDDCPA 0.85V VDDHS[1:0] 1.2V VDDHSPX 1.2V VDDO[19:0][1: 1.8V VDDOPX 1.8V VDDA[1:0] 1.8V VDDAPX 1.8V VDDPLL[1:0] 1.8V VDDPLLPX 1.8V VDDIO 3.3V 4 第 22 页:第 IV 节,项目:7. 中标者向 C-DAC 交付的物品 要点:(j)所述组装板 - 五 (5) 块完全组装的
注释: • 上电至功能时间基于 IO 组的 VDDI/VDDAUX 在 VDD/VDD18/VDD25 之前或之后通电的情况。IO 组启用时间从 VDD/VDD18/VDD25 的断言时间开始测量。如果 IO 组的 VDDI/VDDAUX 在 VDD/VDD18/VDD25 之后通电充足,则 IO 组启用时间从 VDDI/VDDAUX 的断言开始测量。在这种情况下,IO 操作由 BANK_#_VDDI_STATUS 的断言指示,而不是相对于 FABRIC_POR_N 否定进行测量。 • AUTOCALIB_DONE 的断言可以在 DEVICE_INIT_DONE 的断言之前或之后发生。AUTOCALIB_DONE 断言所需的时间取决于: – VDD/VDD18/VDD25 通电后 VDDI/VDDAUX 上升的时间。 – 指定用于自动校准的每个 IO 组的 VDDI 斜坡时间。 – 需要对 PCIe、SerDes 收发器和结构 LSRAM 执行多少自动初始化。 – 如果任何指定用于自动校准的 IO 组未在自动校准超时窗口内打开其 VDDI/VDDAUX,则每当 VDDI/VDDAUX 随后打开时,它都会自动校准。为了在此类 IO 组上获得准确的校准,需要启动重新校准(使用结构中的 CALIB_START)。 • 在 DEVICE_INIT_DONE 或 AUTOCALIB_DONE 断言后约 100 个系统控制器时钟周期,SUSPEND_EN 断言(如果启用了挂起模式)。 • 这两个设备系列都具有内置篡改检测功能,用于监控电压供应和标志以检测最小或最大阈值。这些标志仅在设计初始化后有效,而不是在 POR 期间有效。如果启用了系统控制器挂起模式,则必须锁存 TAMPER 标志,以便在 DEVICE_INIT_DONE 置位之后、SUSPEND_EN 置位之前,结构设计可以读取这些值。