网络安全在维持个人用户信息(例如密码和PIN代码)的机密性和完整性方面面临着重大挑战。每天,数十亿用户会接触到请求敏感信息的假登录页面。有很多方法可以欺骗用户访问网站,例如网络钓鱼电子邮件,诱饵和开关广告,click插齿,恶意软件,SQL注入,会话劫持,中间人,中间人,拒绝服务和跨站点脚本攻击。Web欺骗或网络钓鱼是一种电子技巧,其中攻击者会创建合法网页的恶意副本,并请求个人用户信息(例如密码)。为了打击此类攻击,研究人员提出了几种安全策略,但它们遭受了延迟和准确性问题的困扰。为了克服此类问题,我们建议并开发一种基于机器学习技术的客户端防御机制,以检测伪造的网站并保护用户免于网络钓鱼攻击。作为概念证明,开发了一个名为PhishCatcher的Google Chrome扩展程序,该扩展名实现了机器学习算法以将URL归类为可疑或值得信赖。该算法采用四种不同类型的Web功能作为输入,并使用随机森林分类器来确定登录网页是否是假的。为了评估扩展的准确性和精度,在实际Web应用程序上进行了一些实验。实验结果表明,从400个分类的网络钓鱼URL和400个合法URL的实验中,实验的惊人精度为98.5%,精度为98.5%。PhishCatcher记录的平均响应时间仅为62.5毫秒。为测量工具的潜伏期,还进行了40多个网络钓鱼URL的实验。
请注意: • 所有附加险均独立提供保障,且为可选保障。投保人有权享受每项附加险(包括基本产品)下的附加险利益,并可灵活选择上述任何一项或全部附加险,但须遵守董事会批准的承保政策。 • 附加险保费不得超过基本产品保费的 30%,但健康险或重大疾病险保费除外,这些附加险保费不得超过基本产品保费的 100%。 • 除意外身故保险金附加险外,上述每项附加险产生的任何利益不得超过基本产品的保额,意外身故保险金附加险的保额最高不得超过基本保额的三倍。
b"作者姓名:Divyanshu Tak 1,2, ;Biniam A. Garomsa 1,2 ;Tafadzwa L. Chaunzwa 1,2,10 ;Anna Zapaishchykova 1,2, ;Juan Carlos Climent Pardo 1,2 ;Zezhong Ye 1,2, ;John Zielke 1,2 ;Yashwanth Ravipati 1,2 ;Sri Vajapeyam 4 ;Ceilidh Smith 2 ;Kevin X.Liu 4 ;Pratiti Bandopadhayay 4,5 ;Sabine Mueller 9 ;黄蒙德4,5,11; Tina Y. Poussaint 4,5;Benjamin H. Kann 1,2,5 * 作者隶属关系:1. 哈佛医学院麻省总医院医学人工智能 (AIM) 项目,美国马萨诸塞州波士顿 2. 哈佛医学院丹娜—法伯癌症研究所和布莱根妇女医院放射肿瘤学系,美国马萨诸塞州波士顿 3. 马斯特里赫特大学 CARIM & GROW 放射学和核医学系,荷兰马斯特里赫特 4. 波士顿儿童医院,美国马萨诸塞州波士顿 5. 丹娜—法伯癌症研究所,美国马萨诸塞州波士顿 6. 密歇根州立大学,美国密歇根州东兰辛 7. 费城儿童医院,美国费城 8. 宾夕法尼亚大学,美国宾夕法尼亚州 9. 加利福尼亚大学神经内科、神经外科和儿科系,美国旧金山 10. 纪念斯隆凯特琳癌症中心中心,纽约,美国 11. 哈佛医学院布莱根妇女医院放射科,马萨诸塞州波士顿。 * 通讯作者 通讯地址:Benjamin H. Kann,医学博士 医学人工智能 (AIM) 项目,麻省总医院布莱根,哈佛医学院,221 Longwood Avenue,Ste 442,波士顿,马萨诸塞州 02115,美国 电子邮件:Benjamin_Kann@dfci.harvard.edu 摘要 应用于脑磁共振成像 (MRI) 的人工智能 (AI) 有可能改善疾病的诊断和管理,但需要具有可泛化知识的算法,以便在各种临床场景中表现良好。到目前为止,该领域受到有限的训练数据和特定于任务的模型的限制,这些模型不能很好地应用于患者群体和医疗任务。基础模型通过利用自我监督学习、预训练和有针对性的适应,提出了一个有前途的范例来克服这些限制。在这里,我们介绍了脑成像自适应核心 (BrainIAC),这是一种新颖的基础模型,旨在从未标记的脑 MRI 数据中学习广义表示,并作为各种下游应用适应的核心基础。我们在 48,519 个脑 MRI 上进行了广泛任务的训练和验证,证明 BrainIAC 优于局部监督训练和其他预训练模型,特别是在低数据设置和高难度任务中,允许在其他不可行的情况下应用。
确保AI与社会利益保持一致是我们时代的关键挑战。我相信,教育在实现这一目标方面可以发挥至关重要的作用 - 教授AI中的技术主题必须与促进对AI更广泛影响的积极思考相结合。此外,重要的是要通过调整教育过程来说明生成性AI的可用性来为学生做好现实世界中的挑战。以前,我曾帮助在包括机器学习,概率和统计数据以及高级算法在内的多个机构中教授九门课程。此外,我还监督了学士学位,硕士和博士学位的13名学生,他们的工作导致了学术区别和多个顶级出版物[Neurips'21],[Neurips'24C],[ICML'24]。展望未来,我渴望开发和教授涵盖AI,AI安全和LLM代理的课程,以及与LLMS,机器学习,入门数学和计算机科学相关的更通用课程。
PhishCatcher:使用机器学习1 Mr.G的客户端防御网络欺骗攻击。Harish Kumar,2 B. Srivani,3 B. Nikhitha,4 C. Varshitha 1电子和传播工程系助理教授,Malla Reddy工程学院,妇女Maisammaguda,Dhulapally Kompally,Medchal Rd,Medchal Rd,M,Medchal Rd,M,Secunderabad,Secunderabad。2,3,4,Malla Reddy工程学院电子与传播工程系学生,MALLA REDDY工程学院,Maisammaguda,Dhulapally Kompally,Medchal Rd,M,Medchal Rd,M,Secunderabad,Telangana。摘要网络安全面临着一个巨大的挑战,即保持用户私人信息(例如密码和PIN代码)的机密性和完整性。每天将数十亿用户暴露于伪造登录页面,要求秘密信息。有很多方法可以欺骗用户访问网页,例如网络钓鱼邮件,诱人的广告,点击插错,恶意软件,SQL注入,会话劫持,中间人,拒绝服务和交叉站点脚本攻击。Web欺骗或网络钓鱼是一种电子技巧,攻击者构建合法网页的恶意副本,并请求用户的私人信息(例如密码)。为了应对此类漏洞,研究人员提出了几种安全策略,但他们面临延迟和准确性问题。为了克服此类问题,我们根据机器学习技术提出和开发客户端的防御机制,以检测欺骗的网页并保护用户免受网络钓鱼攻击。该算法采用四种不同类型的Web功能作为输入,然后随机森林分类器决定是否对登录网页进行了欺骗。作为一种概念证明,开发了一种被称为PhishCatcher的Google Chrome扩展程序,它是开发了实现我们的机器学习算法的,该算法将URL归类为可疑或值得信赖。为了评估扩展的准确性和精度,对实际Web应用程序进行了多个实验。实验结果表明,在400个分类的Pheded和400个合法URL上进行的试验的精确度很高,为98.5%,为98.5%。此外,为了测量我们的工具的潜伏期,我们进行了40多个浮网罗的实验。PhishCatcher的平均记录响应时间仅为62.5毫秒。I.介绍于2022年1月1日,法国国家数字科学与技术研究所(INRIA)的成员/用户收到了法语中的一封电子邮件,要求用户使用直接链接https://www.educationonline确认其网络邮件帐户。nl/cliquez.ici.cas.inria.fr.cas.login/login.htm l。单击此链接时,它需要一个假,但出现了真正的中央身份验证登录页面。此
- 对它们的使用方式没有道德问题 - 它们具有相同的通用遗传密码 - 它们包含可用于转移基因的质粒
3. 约瑟夫班克斯爵士公园 描述 约瑟夫班克斯爵士公园由当时的海事服务委员会于 1979 年至 1982 年间修建,是植物湾大型工业港口设施建设的一部分。市议会已将约瑟夫班克斯爵士公园确定为重要的区域设施,服务于城市的大部分地区以及地方政府区域以外的社区。其他地方描述为“滨海保护区”的区域(包括原始沙丘系统和所有填海土地)由 Bruce Mackenzie & Associates 开发,该公司是当时的海事服务委员会在 20 世纪 70 年代中期委托的一家景观咨询公司。堆土和塑造沙土区域是该项目的第一阶段,土方工程于 1980 年初完成。在接下来的五年里,通过种植当地物种重新创造沿海丛林,安装小径、木板路、一系列池塘和其他公园基础设施(第二阶段)。 SJBP 分为两 (2) 个主要部分:Sir Joseph Bank Park 游乐花园、草地和娱乐设施(“绿地”)和滨海保护区(“重建的丛林”)。SJBP 通过其管理的绿地和公园南部的相关设施以及北部的丛林步行道网络提供被动娱乐区;这些步行道与滨海大道平行。