散热器通过调节其热输出来维持电子设备的最佳工作温度,从而起着至关重要的作用。有效的设计对于确保有效的散热量至关重要,从而延长了组件寿命和整体系统性能。随着表面积的增加,由于更多的接触点而引起的热量耗散速率也会增加。这意味着更大的表面积可以从散热器到周围的空气中更大的热传递,从而增强冷却。在紧凑的系统中,在包含结构的同时达到一个较大的表面积至关重要。鳍和销阵列,微通道散热器或折叠鳍结构等技术可以增强热量消散而不会增加尺寸。多孔材料,例如金属泡沫,为热传递提供了巨大的内部表面区域。选择散热器的材料时,导热率是关键参数。铜的高热电导率为390-400 w/m·K,使其非常适合高端应用。但是,其成本和密度可能构成挑战。铝的导热率相对较低,但更具成本效益和更轻。像石墨烯这样的新材料具有出色的热导率,并且可能在HSF设计方面具有希望。材料的选择取决于特定的应用要求,即考虑效率,成本,质量和坚固性等因素。有效的散热器设计取决于三种主要的传热机制:传导,对流和辐射。鳍片或销阵列可以增加表面积,而风扇或鼓风机可以提高流速。传导对于将热量从组件转移到外部环境至关重要,从而进一步耗散。总而言之,选择合适的材料和优化散热器设计对于有效的热管理至关重要。热性能优化涉及通过改善热量交换的热界面材料保持热源和散热器之间的良好接触。适当的热路径分布和避免间隙对于有效的热传导至关重要。对流在冷却中起着至关重要的作用,最大化表面积对于提高对流效率至关重要。辐射是散热器设计中的另一个重要机制,Stefan-Boltzmann定律描述了它。使用高发射率的涂料可以显着增强辐射传热。散热器的几何特性在优化热辐射方面也起着至关重要的作用。为了实现有效的热量散热,特征应尽可能多地暴露表面积。散热器的效率在很大程度上取决于其表面,对流传热取决于表面积。计算给定的散热速率的必要表面积涉及使用方程q = h×a×Δt。傅立叶传导定律描述了通过材料的传热:QCONDUCTION = -K×A×ΔT/L。要确定鳍有效性,请使用等式q = h×a×ΔT来计算单个鳍片的传热速率。通过优化热电阻,对流和辐射,可以设计有效的散热器,以有效地将热量从表面散开。制定散热器的过程涉及几个阶段,这些阶段需要特定的工程计算以最大程度地提高热效率。要定义其性能,需要考虑三个关键因素:瓦特,环境温度(TA)和最高连接温度(TJ)中的散热耗散需求(Q)。例如,如果电子组件耗散20 W的热量,则Q = 20 w。然后通过从连接温度中减去环境温度来计算所需的温度升高(ΔT)。散热器的热电阻必须达到所需的温度升高,rth =ΔT/q = 55/20 = 2.75°C/w。散热器选择的类型和材料取决于诸如热量,重量和成本等因素。铝的导热率约为205 W/m·K,因此由于其有效性和成本而适合使用。调整散热器的尺寸和形状,以满足所需的热电阻水平,其中包括鳍片类型,销型或两者。鳍间距计算为:鳍间距=散热器的高度/鳍数。选择散热器设计时,请确保满足热电阻计算。空气对流传热系数(H)通常为10 - 50 W/m²·k。有效的热电阻计算为:rth,总计= rth,散热器+rth,界面+rth,结。按照设计信息构建物理散热器,并通过使用温度计测量温度差异来评估。取决于结果,可以对设计进行一些修改,以达到必要的热电阻。在设计电子设备时,适当的热管理至关重要,因为错误可能会产生负面影响。一个常见的错误是低估了适当的散热所需的表面积,这可能导致温度状态增加,甚至会导致组件的热冲击。制造有效的铝热散热器对于冷却电子设备至关重要,并防止它们过热。散热器用于消散由晶体管,CPU和功率放大器等组件产生的热量。制作散热器的过程涉及多个步骤,包括选择合金,设计散热器以进行最佳性能,准备材料,完成表面以增强与组件的接触,创建鳍以增加表面积,并将所有部分组装在一起。铝是一种流行的选择,因为其出色的导热率和轻质性质。但是,并非所有铝合金都适合散热器。通常使用6061和6063,因为它们具有良好的导热率且具有成本效益。散热器的设计应考虑尺寸,形状和鳍排列等因素,以确保最佳性能。准备材料涉及使用锯或CNC机器将其切成所需的尺寸,并在此过程中佩戴安全齿轮。整理表面需要砂纸逐渐磨碎的砂纸,然后使用金属抛光化合物进行抛光。这会产生光滑的表面,从而促进与热生成分量更好的接触。创建鳍涉及使用CNC机器或类似工具将其均匀地切入铝材材料,从而大大增加了散热器的表面积并允许更好的散热。散热器的鳍的尺寸和形状均匀,以确保在整个散热过程中保持稳定的性能。
由于工业设备产生的副产品热量会造成功率耗散,从而对其性能产生负面影响,因此几乎所有这些应用都需要一定的温度限制才能在适当的条件下工作。也就是说,如果过热超过这些限制,这些工程设备可能会以某种方式失效。在所有相关行业中,功率密度的不可阻挡的增长正在推动热交换技术的创新。此外,电子设备在热能产生量增加的同时,体积也变得越来越小。因此,散热器可用于冷却许多重要应用中的关键部件,从航空发动机和核反应堆到计算机、数据中心服务器机架和其他微电子设备。
在 EPA 大气保护办公室 (OAP) 内,燃料燃烧排放的开发和汇编由 Vincent Camobreco 领导。Sarah Roberts(EPA 交通和空气质量办公室 (OTAQ))指导了移动源排放估算的汇编工作。能源部门的逃逸甲烷排放工作由 Julie Powers、Melissa Weitz 和 Chris Sherry 指导。废物部门排放估算的开发和汇编由 Lauren Aepli 和 Mausami Desai 领导。 John Steller 和 Kenna Rewcastle 指导了农业和土地利用、土地利用变化和林业章节估算数据的汇编工作,并得到了 Jake Beaulieu 和 Alex Hall(美国环保署研究与发展办公室(ORD))的支持,负责汇编与水淹土地相关的 CO 2 和 CH 4 清单。Amanda Chiu 和 Vincent Camobreco 指导了工业过程和产品使用(IPPU)CO 2 、CH 4 和 N 2 O 排放的开发和汇编工作。Deborah Ottinger、Dave Godwin 和 Stephanie Bogle 指导了 IPPU 部门 HFCs、PFCs、SF 6 和 NF 3 排放的开发和汇编工作。Mausami Desai 指导了跨领域工作。我们感谢 Bill Irving 提供的一般性建议、指导和跨领域审查。
2.4 目前英国排放清单中人为排放的不确定性 14 2.4.1 来自 NAEI 的数据 14 2.4.2 来自 ISR 数据库的数据 14 2.4.3 公共电力生产商 16 2.4.4 焚烧 17 2.4.5 产品的生产和使用 17 2.4.6 家庭燃烧 18 2.4.7 垃圾填埋场 18 2.4.8 预算考虑 19 2.5 汞的自然排放和再排放 19 2.5.1 简介 19 2.5.2 直接测量汞交换通量 20 2.5.3 根据空气浓度变化估计的汞排放量 23 2.5.4 汞浓度和沉积物的历史水平 24 2.6 排放量的时间变化和趋势 25 2.6.1 时间变化 25 2.6.2未来排放趋势 25
在EPA的大气计划办公室,燃料燃烧的排放开发和汇编由Vincent Camobreco领导。莎拉·罗伯茨(Sarah Roberts)和贾斯汀·盖伊多斯(Justine Geidosch)指示这项工作以汇编移动资源的排放估算。在Erin McDuffie的支持下,Melissa Weitz和Chris Sherry指导了能源部门的逃亡甲烷排放。由雷切尔·施密茨(Rachel Schmeltz)和劳伦·阿普利(Lauren Aepli)领导的废物部门排放估算的发展和汇编。汤姆·沃思(Tom Wirth)和约翰·斯特勒(John Steller)指示作品汇编农业和土地利用,土地利用变化和林业章节的估计。由Amanda Chiu和Vincent Camobreco指导的工业过程和产品使用(IPPU)CO 2,CH 4和N 2 O排放的开发和汇编。由IPPU领域的HFC,PFCS,SF 6和NF 3的排放的开发和汇编由Deborah Ottinger,Dave Godwin和Stephanie Bogle指导。交叉切割工作由毛萨米·德赛(Mausami Desai)指导,在不确定性分析的艾琳·麦克杜菲(Erin McDuffie)的支持下。
为了吸引全国的公众和研究人员,EPA为本文档进行了年度公开审查和评论过程。通过联邦注册通知宣布了EPA温室气体排放网站上文件草案的可用性。公众意见期涵盖了从2月14日至2024年3月15日的30天期间,在公众审查期内收到的评论将发布到案卷EPA EPA-HQ-OAR-2024-0004。在公众评论期结束后收到的评论将在本年度报告的下一版中考虑。对评论的回复通常在2024年4月发布最终报告后2-4周发布到EPA的网站。12
........................................................................................................................................................................... ..CN-16 7
EPA还通过其温室气体报告计划(GHGRP)从各个设施中收集了各个设施的温室气体排放数据,并收集了某些化石燃料和工业气体的供应商,该计划是美国库存。5F 3 GHGRP适用于直接温室气体发射剂,化石燃料供应商,工业温室气体供应商以及为固并或其他原因注入地下二氧化碳(CO 2)的设施,并需要在41个工业类别中由8,000多个来源或供应商进行报告。6F 4年度报告是在设施级别,除了某些化石燃料和工业温室气体的供应商外。通常,报告的阈值为25,000公吨或更多的CO 2等式。每年。 大多数源类别的设施受GHGRP的约束开始报告2010年报告年度,而其他类型的工业运营开始报告2011年报告年度。 EPA的GHGRP中使用的5种方法与2006 IPCC指南一致。 GHGRP不能完全覆盖美国每年的美国温室气体排放和清除量(例如,GHGRP不包括农业,土地使用和林业领域的排放),这对于计算该库存中国家水平发射的计算是一个重要的意见。每年。大多数源类别的设施受GHGRP的约束开始报告2010年报告年度,而其他类型的工业运营开始报告2011年报告年度。EPA的GHGRP中使用的5种方法与2006 IPCC指南一致。GHGRP不能完全覆盖美国每年的美国温室气体排放和清除量(例如,GHGRP不包括农业,土地使用和林业领域的排放),这对于计算该库存中国家水平发射的计算是一个重要的意见。
在 EPA 大气项目办公室,Vincent Camobreco 负责燃料燃烧排放研究。Sarah Roberts 和 Justine Geidosch 负责移动燃烧和运输研究。Melissa Weitz 和 Chris Sherry 负责能源部门的逸散甲烷排放研究。Rachel Schmeltz 负责废弃物部门的计算研究。Tom Wirth 负责农业和土地利用、土地利用变化和林业章节的研究,John Steller 提供支持。John Steller 和 Vincent Camobreco 负责工业过程和产品使用 (IPPU) CO 2 、CH 4 和 N 2 O 排放研究,Chris Sherry 和 Amanda Chiu 提供支持。Deborah Ottinger、Dave Godwin 和 Stephanie Bogle 负责 IPPU 部门的 HFCs、PFCs、SF 6 和 NF 3 排放研究。Mausami Desai 负责跨领域工作。
在EPA的大气保护办公室(OAP)办公室内,燃料燃烧的发育和汇编由Vincent Camobreco领导。Sarah Roberts(EPA运输和空气质量办公室(OTAQ))指示该作品汇编了移动资源的排放估算。 由朱莉·鲍尔斯(Julie Powers),梅利莎·韦兹(Melissa Weitz)和克里斯·雪利(Chris Sherry)指导的能源部门的逃亡甲烷排放作品。 废物部门的发育和汇编由Lauren Aepli和Mausami Desai领导。 John Steller和Kenna Rewcastle指示工作,以汇编农业和土地使用,土地利用变化以及林业章节的估计,并得到杰克·博利伊(Jake Beaulieu)和亚历克斯·霍尔(EPA研发办公室(EPA)(ORD)(ORD)对CO 2和CH 4与洪水相关的库存的库存。>Sarah Roberts(EPA运输和空气质量办公室(OTAQ))指示该作品汇编了移动资源的排放估算。由朱莉·鲍尔斯(Julie Powers),梅利莎·韦兹(Melissa Weitz)和克里斯·雪利(Chris Sherry)指导的能源部门的逃亡甲烷排放作品。废物部门的发育和汇编由Lauren Aepli和Mausami Desai领导。John Steller和Kenna Rewcastle指示工作,以汇编农业和土地使用,土地利用变化以及林业章节的估计,并得到杰克·博利伊(Jake Beaulieu)和亚历克斯·霍尔(EPA研发办公室(EPA)(ORD)(ORD)对CO 2和CH 4与洪水相关的库存的库存。由Amanda Chiu和Vincent Camobreco指导的工业过程和产品使用(IPPU)CO 2,CH 4和N 2 O排放的开发和汇编。由IPPU领域的HFC,PFCS,SF 6和NF 3的排放的开发和汇编由Deborah Ottinger,Dave Godwin和Stephanie Bogle指导。横切工作由毛萨米·德赛(Mausami Desai)执导。我们感谢Bill Irving的一般建议,指导和跨切割审查。