固态光化学描述了对多种工业的重要性驱动反应的广泛。紫外线固化的聚合已在生产中司空见惯,用于打印,涂料和添加剂制造。1光降解是食品科学,药物,聚合物,太阳能电池和空间材料的障碍。2 - 5光电半导体被用作异质光催化剂的异质光催化剂,以提高各种反应的效率,6长期用作光发射二极管和光伏特细胞。7 - 9这些应用都是一个积极的科学研究领域,因为社区正在寻找更绿色的过程和能源解决方案。光化学在光合作用,皮肤损伤和视力等生物系统中也很普遍。10
摘要:纳米级材料的结构,形态和性能特征恰恰取决于纳米填料的分散状态,而纳米级材料的结构,形态和性能特征又取决于纳米填料的分散状态,而纳米填料的分散状态又取决于制备方案。在本报告中,我们审查了在聚合物材料上和内部的原位产生的纳米颗粒的合成策略,这种方法依赖于合适的前体与纳米杂交系统堆积同步的功能性纳米颗粒的化学转化。与标准制备方法相比,这种方法是明显不同的,该方法利用了大分子宿主内预形成的纳米颗粒的分散,并且在时间和成本效益,环境友好性以及所得复合材料的统一性方面具有优势。值得注意的是,原位生成的纳米颗粒倾向于在大分子链的活跃部位成核和生长,在聚合物宿主上显示出强粘附。到目前为止,该策略已在包含金属纳米颗粒(银,金,铂,铜等)的织物和膜中进行了探索。与其抗菌和防污应用有关,而概念概念概念示范以及氧化钛 - 氧化钛,分层的双羟化氢氧化物,hector-,hector-,hector-,木质素 - 木质素和羟基磷灰石基于基于氧化氢的含量。这样制备的纳米复合材料是多种应用,例如水纯化,环境修复,抗菌治疗,机械加固,光学设备等的理想候选者。
摘要:带有尖晶石LI 4 Ti 5 O 12(LTO)电极的锂离子固态电池具有显着的优势,例如稳定性,长寿和良好的乘法性能。在这项工作中,通过大气等离子体喷涂方法获得LTO电极,并通过在LTO电极上的原位紫外线(UV)固化制备复合固体电解质。使用柔软的组合策略设计了复合固体电解质,并将电解质制备成聚(乙烯基氟化物-CO-HEXAFRUOROPYLENE)(PVDF-HFP)的复合材料(PVDF-HFP)柔性结构和高导不导率Li 1.3 Al 0.3 Al 0.3 Ti 1.7(PO 4)(PO 4)3(LATP)硬颗粒。复合电解质在30℃下表现出高达0.35 ms cm -1的良好离子电导率,而在4.0 V上方的电化学窗口显示出。原位和原位电解质被组装到LTO // Electrolete // Li Solid-State电池中,以研究其对电池电化学性能的影响。结果,组装的Li 4 Ti 5 O 12 //原位电解质// Li电池的性能速度很高,其容量保留率为90%,在300个周期后,在0.2 mA/cm 2时为0.2 mA/cm 2。这项工作为制造新型高级固态电解质和电极的新方法提供了一种新方法,用于应用固态电池。
摘要:在过去的几十年中,X 射线吸收光谱 (XAS) 已成为探测非均相催化剂结构和成分、揭示活性位点的性质以及建立催化剂结构模式、局部电子结构和催化性能之间联系的不可或缺的方法。本文将讨论 XAS 方法的基本原理,并描述用于解读 X 射线吸收近边结构 (XANES) 和扩展 X 射线吸收精细结构 (EXAFS) 光谱的仪器和数据分析方法的进展。本文将介绍 XAS 在非均相催化领域的最新应用,重点介绍与电催化相关的示例。后者是一个快速发展的领域,具有广泛的工业应用,但在实验表征限制和所需的高级建模方法方面也面临着独特的挑战。本综述将重点介绍使用 XAS 对复杂的现实世界电催化剂获得的新见解,包括其工作机制和化学反应过程中发生的动态过程。更具体地说,我们将讨论原位和原位 XAS 的应用,以探测催化剂与环境(载体、电解质、配体、吸附物、反应产物和中间体)的相互作用及其在适应反应条件时的结构、化学和电子转变。
采用Nb含量为25 wt%的混合粉末,通过选择性激光熔化(SLM)原位制备了一种具有定制微观结构、增强力学性能和生物相容性的钛铌(Ti-Nb)合金。研究了激光能量密度从70 J/mm 3 到110 J/mm 3 对SLM打印Ti-25Nb合金的相变、微观结构和力学性能的影响。结果表明,110 J/mm 3 的能量密度可使合金的相对密度最高且元素分布均匀。通过X射线衍射和透射电子显微镜鉴定了具有[023]β//[-12-16]α'取向关系的α'和β相,它们的比例主要取决于激光能量密度。随着能量密度的增加,由于冷却速度降低、温度梯度增大,Ti-25Nb合金的组织由针状晶粒变为粗化的板条状晶粒,再变为板条状晶粒+胞状亚晶粒。打印Ti-25Nb合金的屈服强度和显微硬度随能量密度从70 J/mm 3 增加到100 J/mm 3 而降低,在110 J/mm 3 时又升至最高值645 MPa和264 HV。力学性能的这种变化取决于α'相的粗化和β(Ti,Nb)固溶体的形成。此外,与纯Ti相比,SLM打印的Ti-25Nb合金既表现出优异的体外磷灰石形成能力,又表现出更好的细胞扩散和增殖能力。
二维 (2D) 过渡金属二硫属化物已成为下一代光电和自旋电子器件的有前途的平台。使用胶带进行机械剥离仍然是制备最高质量的 2D 材料(包括过渡金属二硫属化物)的主要方法,但总是会产生小尺寸的薄片。这种限制对需要大规模薄片的研究和应用构成了重大挑战。为了克服这些限制,我们探索了使用最近开发的动力学原位单层合成法 (KISS) 制备 2D WS 2 和 WSe 2。特别是,我们关注了不同基质 Au 和 Ag 以及硫族元素原子 S 和 Se 对 2D 薄膜产量和质量的影响。使用光学显微镜和原子力显微镜表征了 2D 薄膜的晶体度和空间形貌,从而对剥离质量进行了全面评估。低能电子衍射证实 2D 薄膜和基底之间没有优先取向,而光学显微镜则表明,无论使用哪种基底,WSe 2 在生成大单层方面始终优于 WS 2。最后,X 射线衍射和 X 射线光电子能谱表明 2D 材料和底层基底之间没有形成共价键。这些结果表明 KISS 方法是非破坏性方法,可用于更大规模地制备高质量 2D 过渡金属二硫属化物。
elisabeth Andrews , CIres, U. Colorado at Boulder and Noaa Global Monitoring Laboratory, USA Gregory Schuster, Chip Trepte Nasa Lars, USA Vassilis Amiridis , Enni Marinou , Greceens (Noasars, Iaasars, Iaasars, Iaasars, Iaasars, Iaasars, Iaasars, Iaasars, Iaasars, Iaasars,Iaasars,Iaasars,Cambaliza,Ateneo de Manila University和Manila天文台,菲律宾Mian Chin,NASA GSFC,美国OLEG DUBOVIK,CNRS/CNRS/LILLE大学,Lille大学,Lille大学,Seoul National Univallate,Seoul National Universation,Korean Redempann,Underean Redempann,美国俄克拉荷马大学,美国俄克拉荷马州,美国俄罗斯大学,俄罗斯大学,俄勒冈州俄罗斯大学。
粉末,散装,薄膜粉末的附件,薄膜X射线源3KW / 9kW0d・1d ・1d ・ 2D检测器反射 /变速箱Johanssonkα1单位(选项)
1 1荷兰乌得勒支大学乌得勒支(IMAU),荷兰2号荷兰2号应用科学研究组织(TNO),荷兰乌得勒支台(Utrecht EMPA - 瑞士联邦材料科学技术实验室,瑞士杜宾多夫6大气与气候科学研究所,苏黎世,苏黎世,苏黎世,瑞士7 Deutsches zentrumfürluft- uft- und und und undraumfahrt(DLR) Carafoli” (INCAS), Bucharest, Romania 9 Scientific Aviation (SA) Inc., 3335 Airport Road Suite B, Boulder, Colorado 80301, United States a now at: Department of Renewable Energies and Environment, College of Interdisciplinary Science and Technologies, University of Tehran (UT), Tehran, Islamic Republic of Iran b now at: Earth Systems and Global Change, Wageningen University and Research(WUR),荷兰Wageningen C NOT:联合国环境计划(UNEP)国际甲烷排放天文台(IMEO),法国巴黎,法国,1荷兰乌得勒支大学乌得勒支(IMAU),荷兰2号荷兰2号应用科学研究组织(TNO),荷兰乌得勒支台(Utrecht EMPA - 瑞士联邦材料科学技术实验室,瑞士杜宾多夫6大气与气候科学研究所,苏黎世,苏黎世,苏黎世,瑞士7 Deutsches zentrumfürluft- uft- und und und undraumfahrt(DLR) Carafoli” (INCAS), Bucharest, Romania 9 Scientific Aviation (SA) Inc., 3335 Airport Road Suite B, Boulder, Colorado 80301, United States a now at: Department of Renewable Energies and Environment, College of Interdisciplinary Science and Technologies, University of Tehran (UT), Tehran, Islamic Republic of Iran b now at: Earth Systems and Global Change, Wageningen University and Research(WUR),荷兰Wageningen C NOT:联合国环境计划(UNEP)国际甲烷排放天文台(IMEO),法国巴黎,法国,