.1-目标的一般目标旨在:主要涉嫌在这些转移中涉及的生物学元素(植物,菌根,微生物)的作用:在土壤和放射性核素吸收/释放植物中,放射性核素的吸附/解吸/解料。通过将从实验结果获取的知识纳入两个机械模型ChemFast和Biorur,专门为从土壤基质中的吸附/脱落核素的吸收/脱离植物的吸收/释放,通过将植物的吸收/释放提高了这些机械模型以将这些机械模型纳入其预测能力。.2-对所进行的研究的简要描述以及采用的方法/方法。为了实现鲍里斯项目的目标,已经进行了以下研究活动:.2.1-非生物参数在土壤批处理中放射性核素的生物利用度中的作用,并且已经通过完整的土壤和土壤元素进行了柱子批处理和柱实验:确定主要物理溶液的主要物理化学参数(pH)的效果(pH)对pH构图,pH构图,pH,pH,ph,pH)的效果(pH)的作用(pH)。 (人为地)污染了自然土壤,分析了水含量和过程的动力学对RN重新启动效率的影响,以提供实验数据,以确定微生物对控制土壤 - 土壤溶液中RN命运的过程的重要性。已经确定了不同土壤微生物在放射性核素摄取中的作用。.2.2-生物参数在土壤中放射性核酸盐生物利用度中的作用。2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.1-土壤微生物的潜在作用实验装置,以精确地确定微生物过程在生物利用度中的作用,以在辐射核核能的生物利用度和循环中的各种核对范围的机械信息,以开展各种实验性的途径,以开展各种核对及其对土壤的核心核心核酸际无限核酸盐的影响。在最佳生长条件下融合了微生物活性,以解决土壤微生物在放射性核素吸附/解吸方面的作用。.2.2.2-已经开发了植物研究实验的作用,以研究影响放射性核素的土壤至植物转移的某些植物依赖性过程的机制,并阐明了根表面土壤溶液中放射性核素浓度的变化。
水星(HG)污染是全球问题,因为全球HG的毒性高和广泛的分散。由于人为活动还是自然过程,HG排放量正在稳步增加,在某些地区,水平很高,直接威胁到人类和生态系统健康。然而,细菌和真菌已经响应HG诱导的应激而发展和适应,并开发了耐受性机制,尤其是基于Mer Operon系统,该系统通过HG摄取和通过HG减少反应涉及的MER操纵子系统。其他过程,例如生物蓄积或细胞外隔离,参与HG耐药性,污染土壤的研究允许隔离许多能够具有这些机制的微生物,具有强大的生物治疗方法的潜力。除了在确定生物地球化学周期中汞的命运方面发挥重要作用外,这些微生物确实可以用于降低HG浓度或至少稳定HG以修复受污染的土壤。此外,由于生物技术工具的开发,基于易汞的微生物的生物修复可以优化。最后,这些微生物是生物监测器的相关候选者,例如通过生物传感器的工程化,因为对汞的检测是维护生物健康的主要问题。
1微生物生态与基因组学中心,南非比勒陀利亚大学生物化学系,遗传学与微生物学系,南非; pedro.lebre@up.ac.za(P.H.L. ); jbramond@bio.puc.cl(J.-B.R.) 2汉密尔顿大学生物科学学院,汉密尔顿大学3216,新西兰; craig.cary@waikato.ac.nz 3地球和生物学和行星科学部门,约翰·霍普金斯大学,巴尔的摩,马里兰州21218,美国; jdiruggiero@jhu.edu 4南非开普敦市开普敦大学环境与地理科学系7701; frank.eckardt@uct.ac.za 5生物技术与生物科学学院,新南威尔士大学,悉尼,新南威尔士州2052,澳大利亚; b.ferrari@unsw.edu.au(b.f.); d.tribbia@student.unsw.edu.au(d.t.) 6苏格兰乡村学院,英国爱丁堡EH9 3JG,西马因路; David.hopkins@sruc.ac.uk 7 Gobabeb-namib研究所,沃尔维斯湾13013,纳米比亚; gillian@gobabeb.org 8新加坡国立大学生物科学系117558,新加坡; yncpsb@nus.edu.sg 9 deptramentogenéticatica分子y微生物学,庞蒂亚大学,圣地亚哥7820436,智利10 NASA ames Research Center,Moffett Field,CA 94035,美国,智利10 NASA AMES研究中心; kim_lamma@yahoo.com *通信:don.cowan@up.ac.za;电话。 : +27-82-879-91171微生物生态与基因组学中心,南非比勒陀利亚大学生物化学系,遗传学与微生物学系,南非; pedro.lebre@up.ac.za(P.H.L.); jbramond@bio.puc.cl(J.-B.R.)2汉密尔顿大学生物科学学院,汉密尔顿大学3216,新西兰; craig.cary@waikato.ac.nz 3地球和生物学和行星科学部门,约翰·霍普金斯大学,巴尔的摩,马里兰州21218,美国; jdiruggiero@jhu.edu 4南非开普敦市开普敦大学环境与地理科学系7701; frank.eckardt@uct.ac.za 5生物技术与生物科学学院,新南威尔士大学,悉尼,新南威尔士州2052,澳大利亚; b.ferrari@unsw.edu.au(b.f.); d.tribbia@student.unsw.edu.au(d.t.) 6苏格兰乡村学院,英国爱丁堡EH9 3JG,西马因路; David.hopkins@sruc.ac.uk 7 Gobabeb-namib研究所,沃尔维斯湾13013,纳米比亚; gillian@gobabeb.org 8新加坡国立大学生物科学系117558,新加坡; yncpsb@nus.edu.sg 9 deptramentogenéticatica分子y微生物学,庞蒂亚大学,圣地亚哥7820436,智利10 NASA ames Research Center,Moffett Field,CA 94035,美国,智利10 NASA AMES研究中心; kim_lamma@yahoo.com *通信:don.cowan@up.ac.za;电话。 : +27-82-879-91172汉密尔顿大学生物科学学院,汉密尔顿大学3216,新西兰; craig.cary@waikato.ac.nz 3地球和生物学和行星科学部门,约翰·霍普金斯大学,巴尔的摩,马里兰州21218,美国; jdiruggiero@jhu.edu 4南非开普敦市开普敦大学环境与地理科学系7701; frank.eckardt@uct.ac.za 5生物技术与生物科学学院,新南威尔士大学,悉尼,新南威尔士州2052,澳大利亚; b.ferrari@unsw.edu.au(b.f.); d.tribbia@student.unsw.edu.au(d.t.)6苏格兰乡村学院,英国爱丁堡EH9 3JG,西马因路; David.hopkins@sruc.ac.uk 7 Gobabeb-namib研究所,沃尔维斯湾13013,纳米比亚; gillian@gobabeb.org 8新加坡国立大学生物科学系117558,新加坡; yncpsb@nus.edu.sg 9 deptramentogenéticatica分子y微生物学,庞蒂亚大学,圣地亚哥7820436,智利10 NASA ames Research Center,Moffett Field,CA 94035,美国,智利10 NASA AMES研究中心; kim_lamma@yahoo.com *通信:don.cowan@up.ac.za;电话。 : +27-82-879-91176苏格兰乡村学院,英国爱丁堡EH9 3JG,西马因路; David.hopkins@sruc.ac.uk 7 Gobabeb-namib研究所,沃尔维斯湾13013,纳米比亚; gillian@gobabeb.org 8新加坡国立大学生物科学系117558,新加坡; yncpsb@nus.edu.sg 9 deptramentogenéticatica分子y微生物学,庞蒂亚大学,圣地亚哥7820436,智利10 NASA ames Research Center,Moffett Field,CA 94035,美国,智利10 NASA AMES研究中心; kim_lamma@yahoo.com *通信:don.cowan@up.ac.za;电话。: +27-82-879-9117
重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。您可以下载和/或打印这些项目用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
摘要:这项工作旨在评估土壤特征的影响以及尼古龙的施加量对土壤中降解率的影响。在波斯尼亚和黑塞哥维那的三个地区收集了土壤样品 - Manjača,Kosjerovo和Tunjice。该实验是在受控实验室条件下进行的。基于尼科磺隆(40 g a.s./l,OD)的植物保护产品的浓度为0.075、0.15和0.30 mg A.S./k./kg的土壤。尼古拉氏龙残基,然后分析LC-MS/MS。土壤被归类为粉质壤土,具有机械组成和化学性质的变化。在略微碱性的土壤中,与酸性土壤中DT 50(9.43-16.13天)相比,尼古隆的半衰期(Dt 50)增加(43.31天)。结果表明,土壤特征和施用浓度显着影响尼科磺磺酸杆菌持续性。因此,可以认为,尼科苏硫龙应用于波斯尼亚和黑塞哥维那的粉质壤土,对随后的农作物和环境构成了低风险。
我非常感谢那些从一开始就成为Vacs Partners的人,包括AU,FAO,非洲孤儿作物财团,Agmip,Havos.ai,Cgiar和Rockefeller Foundation。VAC的定义特征之一是它不是项目或程序;顾名思义,这是一种“愿景”,现在是一种运动。关键区别在于,运动需要集体行动和责任才能进步。没有人拥有VACS探索和促进的概念。无需正式会员才能参加其工作。我希望任何人(无论他们是决策者还是研究人员,公司执行官或民间社会领袖,公职人员,私人公民或农民)都可以从VACS中汲取灵感并将其原则应用于自己部门的工作。在一起,个人行动有很大的不同。只有我们可以一起催化我们全球食品系统所需的变化。感谢您成为该运动的一部分!
抽象的北极土壤经常受到空降,海洋或动物来源的微生物侵袭,这可能会影响当地的微生物群落和生态系统功能。然而,在冬季,北极土壤是从雪以外的外部来源分离出来的,这是微生物的唯一来源。通过雪微小的ISMS成功地殖民地殖民化,取决于入侵和居民社区的生存和竞争能力。使用浅shot弹枪元素测序和扩增子测序,本研究监测了整个雪融化的雪和土壤微生物群落,以研究北极土壤的定殖过程。由于观察到成功定殖的所有特征,因此可能发生微生物定植。源自雪的定植微生物已经适应了当地的环境条件,随后在北极土壤中经历了许多相似的条件。此外,与竞争相关的基因(例如运动和毒力)在雪样融化时在雪样中增加。总体而言,在土壤中发现了一百个潜在成功的殖民者,因此证明了熔融过程中土壤中雪微生物的沉积和生长。
摘要我们使用半机械的、基于经验的统计模型来预测全球陆地土壤二氧化碳排放的空间和时间模式。排放包括土壤生物和植物根部的呼吸作用。在全球范围内,土壤二氧化碳流出速率与温度和降水量有显著相关性;它们与土壤碳库、土壤氮库或土壤碳氮的相关性不强。湿地覆盖了大约 3% 的陆地面积,但仅使预测的二氧化碳排放量减少约 1%。估计每年从土壤到大气的二氧化碳通量为 76.5 Pg C yr−1,比之前的全球估计值高 1-9 Pg,比陆地净初级生产力高 30-60%。与未受干扰的植被覆盖相比,历史土地覆盖变化估计已使当前土壤 CO2 年度排放量减少了 0.2–2.0 Pg C yr−1。土壤 CO2 通量在大多数地区具有明显的季节性模式,最大排放量与植物活跃生长期相吻合。我们的模型表明,土壤全年都会产生 CO2,从而导致冬季大气 CO2 浓度升高。我们以 0.5° 纬度经度空间和月时间分辨率推导出基于统计的土壤 CO2 排放量估计值,这是迄今为止对土壤全球 CO2 通量的最佳估计,应该有助于研究大气和陆地生物圈之间的净碳交换。
简介:洪水可能导致土壤中的微生物种群从一个区域转移到另一个区域。放线菌是一种土壤微生物,由于其产生次级代谢物的能力,其商业价值最高。这项研究旨在阐明从洪水和未洪水区域分离的放线菌的抗菌活性。方法:土壤样品是从吉兰丹州达蓬市的洪水泛滥地区和凯兰丹耶利(Jeli)的未洪水地区收集的。使用三种分离方法分离放线菌;超声处理,离心和氯胺T。根据其生长模式(孢子形成),菌落颜色,空中和底物菌丝色以及生长培养基中的可溶性色素形成,筛选了分离的菌株的形态特征。在形态上不同的菌株针对大肠杆菌和白色念珠菌的抗菌和抗真菌活性进行了测试。结果:从土壤样品中分离出970个放线菌菌株(来自洪水的570个菌株和未淹没土壤的400株)。在形态上只有281个菌株是不同的。三十个放线菌菌株的抗菌活性和抗真菌活性。其中十七个抑制了至少一种测试微生物。结论:总而言之,我们的观察结果表明,从洪水泛滥的地区获得的土壤样品显示出各种各样的放线菌,从其形态学特征可以明显看出。这一发现表明,与非洪水土壤面积相比,洪水泛滥的土壤区域具有更高的放线菌。此外,我们发现57%的测试放线菌菌株对至少一种测试有机体表现出活性,表明它们的未来研究潜力。马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7