本研究的目的是调查将聚氯乙烯 (PVC) 废料用作混凝土制造材料而无需预处理的可能性。目的还在于通过在混凝土中稳定和固化 PVC 废料,为限制环境污染和自然资源开发做出贡献。本实验研究的目的是通过与普通混凝土 (OC) 进行比较,通过实验评估 PVC 混凝土的新鲜和固化性能。本研究包括收集 PVC 废料,尤其是自然界废弃的旧 PVC 管,并通过用不同体积比 (5%、10% 和 15%) 的沙子替代将其掺入混凝土中。在本研究中,考虑了两种不同形状 (纤维和细) 的 PVC。根据测试结果,在混凝土中添加 PVC 废料作为天然沙子的部分替代品会降低新鲜混凝土的可加工性。我们注意到,与细 PVC 混凝土相比,含有 PVC 纤维的混凝土的可加工性较低。我们还观察到 PVC 纤维提高了混凝土的抗压强度。随着 PVC 废料的替代率增加,抗压强度也随之增加。然而,细 PVC 比例的增加会导致抗压强度下降。对于 PVC 纤维含量高且 PVC 细度适中的混凝土混合物,可以获得更好的机械性能系数 (MPF)。收集的结果将为回收混凝土混合物中的 PVC 废料提供有用的信息。
羟基磷灰石(HA)已获得了一种在多种生物医学领域(如骨科和牙科)中广泛利用的生物陶瓷的认可。本研究的目的是将羟基磷灰石与Rohu鱼骨分离,并将其整合到具有牙科使用潜力的生物材料中。纳米复合膜。SEM研究将HA确定为纳米球,晶体尺寸低于30 nm。掺入PEGDMA中时,这些纳米颗粒会聚集,可能会破坏聚合物链相互作用并影响膜的机械性能。从经受较高温度钙化的鱼骨获得的XRD模式表现出高度强和尖锐的峰,表明去除了有机部分。FTIR结果证实,由于成功的自由基聚合反应,碳对碳双键的消失。PEGDMA和IRGACURE 2952(86.1409 kJ/mol)的融合焓高焓建议,他们需要高能量才能熔化,而其放热结晶焓(21.35378 kJ/mol)表示,固化后热量释放。添加羟基磷灰石减少了这些焓,表明更容易熔化和凝固,这可能有助于加工为生物医学应用开辟新的可能性,尤其是在牙科中。
玻尔兹曼方法 Oussama El Mhamdi (1) *、Soumia Addakiri (1)、ElAlami Semma (1)、Mustapha El Alami (2) (1) 摩洛哥塞塔特 FST 哈桑第一大学工程工业管理与创新实验室 (2) 摩洛哥卡萨布兰卡哈桑二世大学 Ain Chok 科学学院物理系 LPMMAT 实验室 *通讯作者:电子邮件:oussama.elmhamdi@gmail.com 关键词:格子玻尔兹曼方法、相变材料、热能存储、管壳式热交换器 摘要 热能存储 (TES) 系统在许多工程应用中备受青睐,因为它能够克服能源供应和能源需求之间的不匹配。TES 可用于储存热化学热、显热、潜热或这些热的组合。在这三种形式中,潜热热能存储 (LHTES) 近年来的重要性日益增加,成为传统系统的有前途的替代方案。这些系统使用相变材料 (PCM),采用简单或级联配置,存储熔化潜热(充电过程)并在凝固过程中释放(放电过程)。在 LHTES 系统的不同配置中,管壳式热交换器代表了高温 PCM 中一种有前途且简单的设计。在本文中,我们提出了一项涉及管壳式热交换器的新数值研究,以评估热存储现象。使用格子波尔兹曼方法提供了案例研究和数值结果。
课程编号 标题 学分 课程作业 (24 学分) # 选修课 1 (冶金学基础) MS5050 高级物理冶金学 3 MS5500 材料变形行为 3 MS5510 应用相平衡和相变 3 MS5520 工程合金 2 MS5530 腐蚀科学与工程 3 MS5540 材料工程中的扩散分析 3 MS5330 微观结构在材料选择中的作用 2 选修课 2 (材料加工) MS5550 焊接工艺 3 MS5470 焊接冶金学和增材制造 3 MS5040 材料热机械加工 3 MS5560 铸造和凝固 3 MS5130 粉末冶金制造 3 MS5460 金属增材制造 3 选修课 3 (材料测试与特性) MS5570 材料结构与特性 3 MS5020 电子显微镜 3 MS5280 材料磨损和摩擦学 1 MS5580 材料无损检测 2 MS5590 冶金失效分析 2 选修课 4(先进材料) MS5100 复合材料 3 MS5450 高熵材料 1 MS5300 先进制造的微观结构设计 3 选修课 5(计算材料工程) MS5140 材料科学中的计算方法简介 3 MS5480 材料科学中的机器学习和数据分析 3 学位论文(24 学分) MS5015 论文 – 第一阶段 12 MS5025 论文 – 第二阶段 12 总学分 48 # 所有课程均为选修课。您可以从五个选修课中任意选修一门课程,总计 24 学分。
摘要:研究了激光功率、扫描速度和激光间距三个重要工艺参数对直接能量沉积 718 合金试件沉积层几何形状、微观结构和偏析特性的影响。研究发现,激光功率和激光间距显著影响沉积层的宽度和深度,而扫描速度影响沉积层高度。比能条件的增加(在 0.5 J/mm 2 和 1.0 J/mm 2 之间)增加了沉积层的总面积,产生了不同的晶粒形貌和析出行为,并对其进行了全面分析。沉积层包含三个不同的区域,即顶部、中部和底部区域,根据局部凝固条件变化而形成的不同微观结构特征进行分类。富铌共晶优先偏析在沉积物顶部区域(面积分数为 5.4–9.6%,A f ),该区域主要由等轴晶粒结构组成,而中部区域(面积分数为 1.5–5.7%,A f )和底部区域(面积分数为 2.6–4.5%,A f )则观察到柱状枝晶形态。高扫描速度更有效地降低沉积物顶部和中部区域的富铌相面积分数。观察到<100>晶体方向是柱状晶粒的首选生长方向,而等轴晶粒具有随机取向。
使用微生物诱导的碳酸钙沉淀(MICP)技术可以改善粉质粘土的机械性能,而粘性米粉可以增强微型活性,提高CACO 3降水的转化率,并有助于提高土壤强度。通过添加不同的老化米米浆液和胶结液体,以及无限制的抗压强度测试和扫描电子显微镜分析固体样品,进行了MICP固化测试。研究了粘性稻糊的强度生长机制,结果表明,粘性的米浆可以改善微生物的酶促活性,即,微生物可以产生更多的尿素,可以使尿素分解尿素,并且随着尿布的量增加,促尿液的浓度会增加ic的浓度,并增加了ic的浓度。当添加的煮熟的大米浆液的浓度为5%时,土壤的不受限制抗压强度最大。此外,扫描电子显微镜分析表明,冷却的粘性米浆可以用作产生大量无效的含碳酸的桥梁。钙原子被连接在一起形成有效的碳酸钙,碳酸钙填充了整个土壤的孔,增加了土壤的紧凑性并大大提高了其宏观机械强度。
生产1:铸造:铸造过程和应用程序的类型;沙子铸造:图案 - 类型,材料和津贴;模具和核心 - 材料,制作和测试;门控系统和立管的设计;铸铁,钢和非有产金属和合金的铸造技术;分析凝固和微观结构的发展;其他铸造技术:压力模具铸件,离心铸造,投资铸造,壳模;铸造缺陷及其通过非破坏性测试检查。金属形成:弹性和塑性变形中的应力 - 应变关系;冯·米塞斯(Von Mises)和特雷斯卡(Tresca)产生标准,流动压力的概念;热,温暖和冷工作;批量形成过程 - 锻造,滚动,挤出和线绘图;钣金工作过程 - 空白,打孔,弯曲,拉伸形成,旋转和深色绘图;理想的工作和平板分析;金属工作及其原因的缺陷。材料的加入:加入过程的分类;使用不同的热源(火焰,电弧,电阻,激光,电子束),传热和相关损耗的融合焊接过程原理;电弧焊接过程 - smaw,gmaw,gtaw,等离子体弧,淹没弧焊接过程;固态焊接过程的原理 - 摩擦焊接,摩擦搅拌焊接,超声焊接;焊接缺陷 - 原因和检查;粘合剂加入,砾石和焊接过程的原则。
为了提高对氯化物诱导的局部腐蚀的耐药性,通过将钼含量从3 wt .-%增加到3 wt .-%的Alloy Uns N08825中的Alloy n08825中的3 wt .-%左右的825 ctp中,通过将钼含量从大约3 wt .-%增加到3 wt。通过增加钼含量,pren(由公式(1)给出的匹配抗性等效数)从33增加到42,这给出了提高耐腐蚀性的首先指示。通过在合金N08825中从30°C(86°F)2的临界点温度(CPT)升高至合金825 CTP的合金3-5(131°F)3-5的临界点温度(CPT)从30°C(86°F)2中升高,通过实验证实了改善的耐腐蚀性。pren =%cr + 3.3 x%mo + 16 x%n(1)此外,众所周知,合金N08825在焊接过程中非常容易易于热开裂,这可能发生在热影响区(HAZ)或焊接金属本身中,代表了跨间的故障模式。为了评估材料的热开裂敏感性,固化温度范围(固体二液值差值,ΔT)通常用作首次评估。较高的ΔT导致沿晶界和跨齿状区域分布的残留液相,从而导致冷却收缩过程中晶界延展性的损失,因此可以进行热开裂。6,7在实验上,可以通过改进的涂层(MVT)测试来评估热破裂的敏感性。通常将钛和niobium添加到合金中,以稳定碳并防止在可能导致晶间腐蚀的晶界处的碳化物降水。MVT测试被用作“通用”焊接性测试,旨在独立控制焊接参数和机械负载,该测试允许通过热裂缝数量和焊接样品的热裂纹长度评估和比较材料。在另一侧,从焊接的角度来看,据众所周知,钛对材料的可焊性具有有效的影响,7,但有关钛的这一方面的信息有限。Shankar等人。沿ti稳定的奥氏体不锈钢焊缝的裂缝和跨齿状区域验证了一般的高钛富集。认为,较高的钛含量会导致对晶界的种族隔离增加,这导致在这些地区形成更有害的次级相,后来可能有助于形成裂纹。此外,已知钛和其他分区元素在凝固过程中丰富了谷物和亚晶界。将这些元素分配到边界区域时,可以显着降低这些位点的有效凝固温度范围。8钛作为合金元素的另一个缺陷是其在电弧焊接过程中无法预测的氧化行为,这可能导致间质钛的消耗 - 从而降低了其稳定效果 - 与焊接金属中钛含量的发生结合。由于最近开发的合金825 CTP可以通过高级辅助冶金生产工艺实现非常低的碳含量,因此不需要钛的添加钛的目的
由于具有原位合金化能力,激光束定向能量沉积已成为一种越来越受欢迎的材料发现先进制造技术。在本研究中,我们利用增材制造支持的高通量材料发现方法来探索跨度为 0 ≤ x ≤ 21 at.% 的分级 W x(CoCrFeMnNi)100-x 样品的成分空间。除了微观结构和机械特性外,还对 W 20(CoCrFeMnNi)80 成分进行了同步加速器高速 X 射线计算机辅助断层扫描,以可视化熔化动力学、粉末-激光相互作用和先前固结材料的重熔效应。结果表明,尽管构型熵很高,但当 W 浓度 > 6 at.% 时会形成 Fe 7 W 6 金属间相。当 W 浓度 > 10 at.% 时也会出现未结合的 W 颗粒,同时在 W/基质界面处出现 Fe 7 W 6 溶解带,硬度值大于 400 HV。主要强化机制归因于 Fe 7 W 6 和 W 相作为金属基复合材料的强化。重熔过程中的原位高速 x 射线成像显示,额外的激光通过并未促进 Fe 7 W 6 或 W 相的进一步混合,这表明,尽管 W 溶解到 Fe 7 W 6 相中在热力学上是有利的,但在动力学上受到金属间相的厚度/扩散率以及激光工艺的快速凝固的限制。
奥氏体不锈钢 (ASS) 常用于敏感的氢气 (H) 存储、氢气基础设施以及运输应用,因为与铁素体钢相比,它们通常不太容易受到氢脆 (HE) 的影响。这是因为它们的扩散率较低,而氢的溶解度较高 [1-3]。氢脆描述了这样一种现象:材料的机械性能经常会突然发生灾难性的恶化(特别是在受到拉伸载荷时,由于拉伸延展性的丧失),这是由于酸性溶液中的环境氢和含氢气体 [4-8] 扩散到块体材料中造成的。与不易发生 HE 的热力学稳定 ASS(如 AISI 310S 型)相比,在仅含 8 – 10 wt% Ni 的亚稳态 ASS(如 AISI 304 型)中经常观察到严重的 HE,其中在变形过程中会形成应变诱导的 α ′马氏体 [9 – 11]。应变诱导的 α ′马氏体为 H 提供了快速扩散路径,导致 H 在微观结构的关键位置富集(如异质界面前方的微观机械高应力区域),从而导致 H 辅助开裂 [12, 13]。此外,由于凝固过程中的偏析或高冷却速度导致 δ 到 γ 的转变不完全,亚稳态 ASS 中可能会出现少量的 δ 铁素体。这可能会通过提供裂纹起始点来增加样品的 HE 敏感性 [14, 15]。