2023 年,在 FRPS 下,获得 BMSCE 颁发的 2,00,000 卢比(仅二十万)资助,用于“使用尖晶石铁氧体作为吸附剂去除废水中的重金属”项目 2021 年,获得 TEQIP – III 项目提案资助,用于利用固体废物生物医学焚烧灰生产砖块 2019 年,获得钢铁部颁发的项目提案资助,用于印度 KIOCL 公司开展的“建筑业使用粉煤灰和底灰作为前体生产土聚物骨料的研究”。 2015 年,因项目提案“土工聚合物作为下一代土壤稳定剂”获得学生项目计划 (SPP) 资助,项目提案由印度班加罗尔卡纳塔克邦科学技术委员会 (KSCST)、IISc 提供 2014 年,因开展教师发展计划 (FDP)“腐蚀对混凝土基础设施及其耐久性的影响”获得 VTU-VGST 提供的 200,000 卢比 (20 万卢比) 资助 2014 年,因项目提案“用于制造粉煤灰骨料的托盘化技术”获得学生项目计划 (SPP) 资助,项目提案由印度班加罗尔卡纳塔克邦科学技术委员会 (KSCST)、IISc 提供
微型发电是一种清洁高效的电力供应方式。然而,风能和太阳辐射的不可预测性对满足负载需求和维持微电网 (MG) 稳定运行提出了挑战。本文提出使用群体智能算法对具有净计量补偿策略的混合 MG 系统 (HMGS) 进行建模和优化。使用来自西班牙地区的真实工业和住宅数据,带有通用 ESS 的 HMGS 用于分析四种不同的净计量补偿水平对成本、可再生能源 (RES) 百分比和 LOLP 的影响。此外,还根据 MG 提供的最终 $/kWh 成本评估了两种 ESS,即钛酸锂尖晶石 (Li4Ti5O 12 (LTO)) 和钒氧化还原液流电池 (VRFB) 的性能。结果表明,净计量政策将盈余从 14% 以上减少到 0.5% 以下,并将可再生能源在 MG 中的参与度提高 10% 以上。结果还显示,在年度预测中,与使用不带净计量的 LTO 系统的 MG 相比,使用具有 25% 补偿政策的 VRFB 系统的 MG 可以节省超过 100,000 美元。
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
摘要:带有尖晶石LI 4 Ti 5 O 12(LTO)电极的锂离子固态电池具有显着的优势,例如稳定性,长寿和良好的乘法性能。在这项工作中,通过大气等离子体喷涂方法获得LTO电极,并通过在LTO电极上的原位紫外线(UV)固化制备复合固体电解质。使用柔软的组合策略设计了复合固体电解质,并将电解质制备成聚(乙烯基氟化物-CO-HEXAFRUOROPYLENE)(PVDF-HFP)的复合材料(PVDF-HFP)柔性结构和高导不导率Li 1.3 Al 0.3 Al 0.3 Ti 1.7(PO 4)(PO 4)3(LATP)硬颗粒。复合电解质在30℃下表现出高达0.35 ms cm -1的良好离子电导率,而在4.0 V上方的电化学窗口显示出。原位和原位电解质被组装到LTO // Electrolete // Li Solid-State电池中,以研究其对电池电化学性能的影响。结果,组装的Li 4 Ti 5 O 12 //原位电解质// Li电池的性能速度很高,其容量保留率为90%,在300个周期后,在0.2 mA/cm 2时为0.2 mA/cm 2。这项工作为制造新型高级固态电解质和电极的新方法提供了一种新方法,用于应用固态电池。
b' 对锂离子电池的技术需求快速增长,促使人们开发具有高能量密度、低成本和更高安全性的新型正极材料。高压尖晶石 LiNi 0.5 Mn 1.5 O 4 (LNMO) 是尚未商业化的最有前途的候选材料之一。这种材料的两个主要障碍是由于高工作电压导致的较差的电子电导率和全电池容量衰减快。通过系统地解决这些限制,我们成功开发出一种厚 LNMO 电极,面积容量负载高达 3 mAh \xe2\x8b\x85 cm 2 。优化的厚电极与纽扣电池和袋式电池级别的商用石墨阳极配对,在 300 次循环后,全电池容量保持率分别高达 72% 和 78%。我们将这种出色的循环稳定性归功于对电池组件和测试条件的精心优化,特别注重提高电子电导率和高压兼容性。这些结果表明,精确控制材料质量、电极结构和电解质优化很快就能支持基于厚 LNMO 阴极(> 4 mAh \xe2\x8b\x85 cm 2)的无钴电池系统的开发,这最终将满足下一代锂离子电池的需求,降低成本,提高安全性,并确保可持续性。'
摘要:基于氯化物的固体电解质是由于其高LI +离子电导率和与高压氧化物阴极的全溶剂锂电池相关的材料而引人入胜的材料。然而,这些材料的主要示例仅限于三价金属(例如SC,Y和IN),这些金属价格昂贵且稀缺。在这里,我们通过用二二元和四价金属(例如Mg 2+和Zr 4+)代替三价金属来扩展这种材料家族。我们合成李2 mg 1/3 zr 1/3 cl 4在尖晶石晶体结构中,并将其性质与先前报道的高性能LI 2 SC 2/3 Cl 4进行比较。我们发现Li 2 mg 1/3 Zr 1/3 cl 4的离子电导率较低(在30°C时为0.028 ms/cm),比同构结构LI 2 SC 2/3 Cl 4(30°C时1.6 ms/cm)。我们将这种差异归因于Mg 2+和Zr 4+在LI 2 mg 1/3 Zr 1/3 Cl 4中的无序排列,这可能会阻止LI+迁移途径。但是,我们表明,Li 2 -Z Mg 1 - 3 Z /2 Zr Z Cl 4之间的Aliovalent取代在Li 2 MgCl 4和Li 2 Zrcl 6之间可以提高离子电导率,而ZR 4+含量的增加,可能是由于引入了Li +空位。这项工作为基于卤化物的固体电解质打开了一个新的维度,从而加快了低成本固态电池的开发。■简介
在这项研究中研究了过渡金属对铁素(铁(III)氧化物)化合物的影响。铁氧体样品。X射线分析在三价状态下揭示了Fe期的存在,展示了一个基于(311)反射平面的首选方向的单杆立方尖晶石框架。对于CDFE 3 O 4,Znfe 3 O 4的晶体尺寸,使用Scherer方程的COFE 3 O 4分别得出10.54 nm,18.76 nm和32.63 nm的值。锌铁酸盐与钴和铁氧体相比表现出中间光子性质,镉铁素体的光损失高光损失,钴铁液表现出最小的光学损失。EDX分析证实了Zn 2 +,CO 2 +,Fe 3 +,Cd 2 +和O 2-离子的存在,以支持预期的stoichio-量组成。光学评估表明,COFE 3 O 4纳米颗粒非常适合光电设备,紫外检测器和红外(IR)检测器。与其他样品相比,钴铁素体的VSM测量值比其他样品表现出更高的牢固性和磁饱和度。光致发光(PL)光谱显示出多种颜色,包括青色,绿色和黄色,在铁素体样品的不同波长下。这些发现表明合成样品是由于其可靠的磁性特性而用于高频设备的合适材料。镉铁氧体显示出多磁性结构域的结构,与在锌和钴铁岩中观察到的单磁体结构结构形成对比。
阿科玛与 Morrow 签署了谅解备忘录,旨在共同开发、筛选和测试用于下一代高压电池的新型电解液配方。基于阿科玛专有的超纯锂电解液盐和 Morrow 基于无钴高压尖晶石 (LNMO) 的大尺寸电池,此次合作将加速新一代电池的开发。Morrow Batteries 的目标是成为世界上第一家将 LNMO 技术作为活性阴极材料商业化的电池公司。得益于其特殊的化学性质,与性能相似的电池相比,LNMO 的成本和碳足迹将显著降低。此外,对在阴极和阳极端子之间输送带正电离子的电解液的优化将能够显著提高新一代电池的性能和竞争力。“我们很高兴能与 Morrow Batteries 合作,它是欧洲电池制造领域最具创新性和雄心勃勃的扩张公司之一。 “我们的合作为其基于 LNMO 的尖端电池技术的商业化铺平了道路,我们很高兴阿科玛能够参与其中”,阿科玛首席技术官 Armand Ajdari 表示。阿科玛最近在法国里昂的 Pierre-Bénite 研究中心开设了专门用于电池的卓越中心,并正在加快在该领域的投资。阿科玛利用世界一流的工业流程专业知识,开发出高纯度 Foranext® 锂盐,有助于显著提高电池的功率、稳定性和寿命。
摘要:采用放电等离子烧结技术制备了不同成分的AlN-MgO复合材料,系统研究了成分对其微观结构、热性能和力学性能的影响。AlN-MgO复合材料中MgO的成分控制在20~80wt%。结果表明,烧结过程中未发生相变,MgO和AlN晶格内形成了不同的固溶体。AlN-MgO复合材料的晶粒结构比烧结的纯AlN和MgO样品更细。透射电子显微镜分析表明,复合材料中既存在富氧、低密度的晶界,也存在含有尖晶石相的干净边界。 100 o C时烧结的纯AlN样品表现出最高的热导率(53.2 W/mK)和最低的热膨胀系数(4.47×10 -6 /K);而烧结的纯MgO样品表现出中等的热导率(39.7 W/mK)和较高的热膨胀系数(13.05×10 -6 /K)。但随着AlN-MgO复合材料中MgO含量的增加,AlN-MgO复合材料的热导率从33.3降低到14.9 W/mK,而热膨胀系数普遍增加,随着MgO含量的增加从6.49×10 -6增加到10.73×10 -6 /K。MgO含量为60 wt%的复合材料整体表现出最好的力学性能。因此,AlN-MgO复合材料的成分和微观结构对其热性能和力学性能具有决定性的影响。
在溶剂热条件下,使用 SnCl 4 和 LiNH 2 前体,开发了一种合成尖晶石结构 Sn 3 N 4 的简单且可扩展的新方法。生产了晶粒尺寸 <10 nm 的纳米晶体 Sn 3 N 4,并作为钠半电池的阳极材料进行了测试,结果表明,在 50 次循环中测得的可逆(脱钠)容量非常高,约为 850 mA hg -1,这是除钠本身之外的钠阳极的最高可逆容量。原位 X 射线吸收光谱和 X 射线衍射表明,电化学反应是可逆的,并且 Sn 3 N 4 在重新氧化后会恢复。X 射线衍射表明,与 Sn 3 N 4 反射相关的峰在放电(还原)过程中变窄,证明较小的 Sn 3 N 4 颗粒主要参与电化学反应,并且峰的加宽在氧化后可以可逆地恢复。近边 X 射线吸收数据 (XANES) 分析表明,Sn 的氧化态在还原过程中降低,在氧化过程中几乎恢复到初始值。DFT 计算表明,Na 插入 Sn3N4 表面,然后用 Na 取代四面体 Sn 在能量上是有利的,而从还原电极的扩展 X 射线吸收精细结构 (EXAFS) 测量分析中获得了四面体 Sn 从尖晶石 Sn3N4 结构中去除的证据,这也表明氧化结束时恢复了原始结构。DFT 还表明,Na 取代 Sn 仅在 Sn3N4 表面有利(对块状 Sn3N4 不起作用),这与电化学表征一致,即控制纳米颗粒尺寸对于充分利用 Sn3N4(从而实现高容量)至关重要。
