由于各种心血管疾病是当今的主要死亡原因,进一步了解疾病本身和不同的治疗方法都非常重要。计算流体动力学是新兴工具之一。通过创建心脏各个部分的模型并模拟不同情况下的内部血流,可以获得重要的见解。这项研究以 Larsson 等人、Kronborg 等人和 Spühler 等人的工作为基础,他们使用 Navier-Stokes 方程的数值求解器建立了一个模拟心脏左心室内血流的模型。特别是,这项研究将二尖瓣反流以及二尖瓣和主动脉瓣的实际压力边界条件实现到模型中,并分析了它们的影响。
相对熵或能量技术已广泛用于时间相关偏微分方程的存在性、稳定性和离散化误差分析;我们参考[17]对抛物线发展问题相应结果的最新总结。在本文中,我们感兴趣的是双曲问题,其中相对熵参数的使用可以追溯到DiPerna [7]和Dafermos [5]的开创性著作;另请参阅[6]对该领域的介绍。通常涉及的方面有:收敛到稳定态,解对初始数据和参数的稳定依赖性,以及渐近极限。后者的例子包括欧拉和纳维-斯托克斯方程的低马赫极限,例如在[10]中对其进行了研究。Huang等人在一系列论文[11]中研究了阻尼欧拉方程解到Barenblatt解的长时间收敛性。
ME 522 高级流体力学 3 学分 流体力学研究生课程。根据质量、动量和能量传递的共同原理回顾流体流动现象。介绍工业和环境环境中流体流动的基本概念和分析方法。纳维尔-斯托克斯方程;粘性和非粘性流;层流和湍流;边界层;阻力;热对流。 先决条件:本科热力学、流体力学和传热学的全部课程。课程相当于 ME 520。已经修完 ME 520 且成绩为 B 或更高的学生将不会获得 ME 522 的额外学分。(OC)。限制:如果班级是,则不能注册如果级别是 Rackham 或研究生或博士,则可以注册或者如果专业是机械工程-NCFD、生物工程、机械工程,则可以注册
光子自旋霍尔效应(SHE)是指光束通过光学界面或非均匀介质后,具有相反自旋角动量的光子发生横向自旋分离,表现为自旋相关分裂。它可以被认为是电子系统中的自旋霍尔效应的类似物:光的右旋圆偏振和左旋圆偏振分量分别充当自旋向上和自旋向下的电子,折射率梯度代替了电子势梯度。值得注意的是,光子自旋霍尔效应源于光子的自旋轨道相互作用,主要归因于两个不同的几何相位,即动量空间中的自旋重定向Rytov-Vlasimirskii-Berry相位和Stokes参数空间中的Pancharatnam-Berry相位。光子自旋谐波的独特性质及其强大的操控光子自旋的能力,逐渐使其成为精密计量、模拟光学计算和量子成像等领域的有用工具。在本综述中,我们提供了一个简要的框架来描述光子自旋谐波的基本原理和进展,并概述了该现象在不同场景中的新兴应用。
避免危险气候变化所需的严格政策很难实施,这主要是由于相当大的社会和政治抵抗(Klenert等,2018)。除其他外,这部分是通过废除澳大利亚的碳定价而创建的(Crowley,2017年),两次公开全民投票拒绝在华盛顿州引入碳税的倡议(Reed等人,2019年),以及诸如Fab fab affice and for Fab a Fuel and carbone and Carnecn and carbone and Commente and and and and and and and Carnement(Reed ver)(car)。在澳大利亚,在美国和法国的化石燃料大厅率领的虽然是抵抗运动,但政策的高度感知成本和潜在的回归效果驱动了普通大众的负面影响。其他气候政策工具,例如可再生能源,燃料排放标准和公路通行费的补贴,也看到了公众抵抗(Aasen&Sælen,2022; Benegal&Holman,2021; Stokes; Stokes,2016)。要克服这种抵抗,我们需要更好地理解此类政策的后果。目前有许多用于评估气候政策的环境,社会和经济影响的模型,但其中大多数遭受了纪律偏见。说明了:在经济平衡模型中,理性代理的操作狭窄;对公司和跨部门联系在心理学和社会学研究中的作用以及跨部门联系的关注;对既得利益的力量的了解有限(Farmer等,2015; Stern,2016)。反过来,这可能会削弱对气候政策的社会和政治支持(Sarewitz,2011年)。例如,Adger等人。这种偏见会导致忽视重要的政策影响,这使对所有相关标准的平衡评估变得复杂,例如有效性,效率,公平性和可接受性。要仔细比较气候政策工具,我们建议整合来自不同社会科学的要素,尤其是心理学,社会学,经济学和政治学(图1)。这些要素可能涉及特定学科的重点,机制,指标和政策工具。对这些的核算将有助于对潜在政策的影响以及认识和价值在学科之间的差异和价值上的差异(Klenk&Meehan,2015年)。在本文中,我们认为基于代理的模型(ABM)构成了一种适当的工具,可以启用这种集成并将其性能与替代建模方法进行比较。几项早期的研究承认ABM在此类任务中的潜在作用。(2013)认为,他们“整合了关于变革的传统和科学观点[…],以特别支持自适应管理系统的设计[用于气候变化适应]”。
关于2049项目研究所 2049项目研究所是一个非营利性研究机构,致力于在印度-太平洋地区宣传美国价值观和安全利益。我们擅长使用中文资料进行开源研究,为政策辩论提供信息并促进公共教育。我们的核心使命是创造和传播知识,使该地区更加和平与繁荣。 2049项目研究所位于弗吉尼亚州阿灵顿,由尊敬的兰德尔·薛瑞福和马克·斯托克斯中校(美国空军,退役)于 2008 年共同创立。我们是 501(c)3 免税组织。我们的研究独立且无党派,侧重于加强人权和国家安全。2049项目研究所的研究得到了私人基金会、美国政府机构、志同道合的政府、企业和个人捐助者的支持。 2049 项目研究所 2300 Clarendon Boulevard, Suite 703 弗吉尼亚州阿灵顿市 22201 project2049@project2049.net www.project2049.net
目前的成员有: Ballard, Dominic, East Kentucky Power Coop.,肯塔基州温彻斯特 Beadle, Bob, North Carolina EMC,北卡罗来纳州罗利 Beckett, Thomas, Enercon Services, Inc.,乔治亚州肯纳索 Fan, Quan, Georgia Transmission Corp.,乔治亚州塔克 Johnson, Wilson, USDA,农村公用事业服务公司,华盛顿特区 Lukkarila, Charles, Great River Energy,明尼苏达州枫树林 McAndrew, Jeremy, South Mississippi Electric Power Association,密西西比州哈蒂斯堡 Metro, Patti, National Rural Electric Cooperative Association,弗吉尼亚州阿灵顿 Nordin, Bryan, Tri-State Generation & Transmission Association, Inc.,科罗拉多州丹佛 Ruggeri, Erik, Power Engineers,爱达荷州海莉 Shambrock, Aaron, South Central Power Company,俄亥俄州兰开斯特 Stokes, Gabrielle, USDA,农村公用事业服务公司,华盛顿特区 Twitty, John, PowerSouth Energ Cooperative,阿拉巴马州安达卢西亚
图1。e-field剂量在主题一级优于其他给药策略。(a)选择所有线圈位置以最大化皮质靶刺激。(b)基于电动机阈值(MT)(上排)的剂量在不同的皮质靶区域(柱)施加相同的刺激器强度,从而产生高度可变的皮质刺激强度(以每米的电压为单位; V/m)。“ Stokes”方法(中行)线性地调节了线圈到目标距离的刺激器强度,但仍会导致跨靶标的皮质刺激的次优匹配。e-field的给药(底行)为所有靶标提供相同的皮质刺激强度。颜色:| e |。百分比:MT刺激器强度的百分比。所有电子场均在灰质表面可视化,以示例性主题。(c)刺激器强度(上排)与皮质刺激暴露(底行)之间的关系在皮质靶标之间有很大不同。在皮质靶标上提取刺激暴露,并与MT强度下的M1暴露有关(“ 100%”)。
目前的成员有: Ballard, Dominic, East Kentucky Power Coop.,肯塔基州温彻斯特 Beadle, Bob, North Carolina EMC,北卡罗来纳州罗利 Beckett, Thomas, Enercon Services, Inc.,乔治亚州肯纳索 Fan, Quan, Georgia Transmission Corp.,乔治亚州塔克 Johnson, Wilson, USDA,农村公用事业服务公司,华盛顿特区 Lukkarila, Charles, Great River Energy,明尼苏达州枫树林 McAndrew, Jeremy, South Mississippi Electric Power Association,密西西比州哈蒂斯堡 Metro, Patti, National Rural Electric Cooperative Association,弗吉尼亚州阿灵顿 Nordin, Bryan, Tri-State Generation & Transmission Association, Inc.,科罗拉多州丹佛 Ruggeri, Erik, Power Engineers,爱达荷州海莉 Shambrock, Aaron, South Central Power Company,俄亥俄州兰开斯特 Stokes, Gabrielle, USDA,农村公用事业服务公司,华盛顿特区 Twitty, John, PowerSouth Energ Cooperative,阿拉巴马州安达卢西亚
在相对端,尚未探索盐浓度以形成超级稀释电解质,这是考虑到低离子电导率的可能浓度极化5。因此,今天仍然使用1 m(mol/l)的标准浓度。4然而,由于Na +的STOKES半径和脱溶能的较小,而Na-Ion电池(NIBS)有可能采用低浓度的电解质获得足够的动力学性能。6,7此外,减少昂贵的盐含量可以有效地控制Nibs的成本(图S1),8,这对在网格存储中的应用是有益的。在此,我们提议在第一次使用超浓度的电解质(0.3 m)为实用的Na-ion全细胞使用,这是令人惊讶的,它在稀释电解质化学的较宽工作温度范围内实现了良好的性能。这种有吸引力的电解质配方是通过反向设计提供的,它为解决极端条件下可充电电池的故障问题提供了新的见解。通过将NAPF 6溶解在碳酸乙酯(EC)/丙烯酸丙二醇(PC)(1:1 vol%)的情况下,制备了一系列具有不同浓度的电解质,而没有额外的添加剂 div>