航空结构力学(AM)维护飞机机身和结构部件、飞行表面和控制装置、液压和气动控制和驱动系统和机构、起落架系统、空调、增压、视觉改善、氧气和其他公用系统、出口系统(包括座椅和座舱盖弹射系统和部件);制造和修理金属和非金属材料;监督机身工作中心的运行;维护飞机金属和非金属结构,包括机身、固定和可移动飞行表面、尾梁、门、面板、甲板、尾翼和座椅(弹射座椅除外);维护飞行控制装置和相关机制;维护液压动力存储和分配系统,包括主(主要和次要)、辅助(公用)和应急系统;维护液压驱动子系统;维护起落架系统,包括车轮和轮胎、刹车和应急系统;维护气动动力、储存和分配系统;维护升降机和绞车、机翼和尾翼折叠系统;维护发射和拦阻装置系统;执行液压部件维修和测试;并对飞机进行每日、特殊、每小时、无损和条件检查。
图片列表 v 表格列表 vi 出版物 xii 致谢 xiv 摘要 xv 第 1 章:引言 1 第 2 章:工业厂房风险分析 8 2.1 引言 8 2.2 外部事件的选择 9 2.3 风险评估:方法 14 2.4 地震危险性分析 15 2.4.1 确定性地震危险性分析 (DSHA) 16 2.4.2 概率地震危险性分析 (PSHA) 17 2.4.3 震源识别 19 2.4.4 地震复发关系 20 2.4.5 地面运动衰减关系 21 2.5 构件的结构分析和易碎性 23 2.5.1 厂房设施分析 27 2.5.2结构系统 28 2.5.3 故障模式特性 31 2.5.4 部件的易碎性 36 2.6 工厂系统和事故序列分析 41 2.6.1 归纳法 41 2.6.2 演绎法 43 2.6.3 故障树 44 2.7 后果分析 45 2.7.1 源模型 46 2.7.2 扩散模型 51 2.7.3 爆炸和火灾 53 第 3 章:工业设施特性 60 3.1 简介 60
摘要:本文介绍了一种根据记录的飞行传感器数据估计大气扰动引起的全局结构载荷的方法。所提出的方法基于用扰动动力学增强动态、灵活的飞机模型。推导出此增强模型的状态观测器,即卡尔曼-布西滤波器。传感器数据通过观测器处理,从而能够估计飞机遇到的大气扰动。随后,这些估计的扰动用于估计全局飞机载荷。为了评估载荷估计结果,应用了等效损伤载荷的概念。它将全局载荷与其对飞机结构疲劳的影响联系起来。为了验证所提出的工具链,模拟了认证中的设计场景,即离散阵风和连续湍流遭遇,以模拟真实的操作数据。收集的数据用于将得到的估计负载与模拟负载进行比较,并比较等效损坏负载。
EASA 认证备忘录阐明了欧洲航空安全局针对特定认证项目的一般行动方针。它们旨在为特定主题提供指导,并且作为非约束性材料,可提供符合当前标准的补充信息和指导。认证备忘录仅供参考,不得误解为正式采用的可接受合规手段 (AMC) 或指导材料 (GM)。认证备忘录并非旨在引入新的认证要求或修改现有的认证要求,也不构成任何法律义务。EASA 认证备忘录是动态文件,只要 EASA 确定有需要,就可以在其中纳入其他标准或其他问题。
合理设计的概念涉及基于科学而非经验程序对所有载荷进行全面确定,以便将不确定性关系降至最低。这种方法的理念是,结构响应也可以准确确定,并且可以避免任意较大的安全系数或“无知因素”。该概念与考虑结构的“需求”和“能力”的现代结构设计方法一致。简而言之,不是确保简单计算的设计应力低于材料的极限强度一个任意的安全系数,而是尝试确定作用在结构上的所有载荷的需求,然后确定承载能力——结构在没有失效的情况下可以承受的载荷。当然,这种方法需要对失效进行定义,失效可能是严重的弯曲、大的裂纹、完全的坍塌或拉伸失效(第二章)。合理性的概念。人们认为船体的设计与概率方法一致,这种方法已被证明对于处理随机航道载荷至关重要。需求和能力都可以用概率来表示,令人满意的设计是将失效概率降低到可接受的低值的设计。确定详细结构设计的局部载荷或应力的问题要复杂得多,这里不再讨论。
- Branimir LELA(克罗地亚) – 主席 - Sonja JOZIĆ(克罗地亚) – 副主席 - Dražen ŽIVKOVIĆ(克罗地亚) - Dražen BAJIĆ(克罗地亚) - Goran CUKOR(克罗地亚) - Lidija ĆURKOVIĆ(克罗地亚) - Ivan JANDRLIĆ(克罗地亚) - Nikola GJELDUM (克罗地亚) - Mirko GOJIĆ (克罗地亚) - Krešimir GRILEC (克罗地亚) - Senka GUDIĆ (克罗地亚) - Fuad HADŽIKADUNIĆ (波斯尼亚和黑塞哥维那) - Dario ILJKIĆ (克罗地亚) - Zlatko JANKOSKI (克罗地亚) - Jaroslav JERZ (斯洛伐克) - 佐兰尤尔科维 (克罗地亚) - 埃罗尔·卡姆 (土耳其) - 达尔科·兰德克 (克罗地亚) - 坎迪达·马尔恰 (葡萄牙) - 德拉甘·马林科维 (德国) - 阿莱什·纳戈德 (斯洛文尼亚) - 佐兰·潘迪洛夫 (马其顿) - 姆拉登·佩里尼 (克罗地亚) - 马西莫·罗甘特 (意大利) - 利亚内罗尔多(克罗地亚) - 尼古拉·斯托梅诺夫(保加利亚) - 阿姆拉·塔利-契克米什(波斯尼亚和黑塞哥维那) - 马特伊·韦森雅克(斯洛文尼亚) - 拉迪斯拉夫·弗尔萨洛维(克罗地亚) - 伊维察·韦扎(克罗地亚) - 阿纳托利·扎夫多维耶夫(乌克兰) - 武卡斯吉尔兹(波兰)-武卡斯·瓦尔古拉 (波兰) - 卢卡·塞伦特 (英国) - 瓦尼亚·卡尔达斯·德·索萨 (巴西) - 伊万·皮瓦克 (克罗地亚) - 泽利科·彭加 (克罗地亚) - 阿奇姆·坎普克 (德国) - 法布里奇奥·菲奥里 (意大利) - 保罗·门古奇 (意大利) - 哈桑AVDUŠINOVIĆ(波斯尼亚和黑塞哥维那)
第 1 章概述了快速海上运输市场的现状和未来前景,强调了应用此类先进海洋概念的局限性和优势。在这些概念得到乘客、运营商和政府的更广泛接受之前,必须克服战略和技术方面的挑战,这些挑战构成了本文所述工作开展的背景。不可避免地,必须涵盖大量主题,以便向读者全面介绍这种新型运输方式中预期的结构设计问题及其解决方案。因此,本文并不声称内容完整,而是认为对该主题进行“深度”研究最适合确定结构设计各个方面的相互关联和相互作用程度,因此一直在积极开展研究。
马尔可夫决策过程 (MDP) 为在不确定的情况下对顺序决策进行建模提供了一个广泛的框架。MDP 有两种类型的变量:状态变量 st 和控制变量 dr,它们都按时间 t = 0、1、2、3 .... , T 进行索引,其中时间范围 T 可能是无穷大。决策者或代理可以用一组原语 (u, p, ~) 表示,其中 u(st, dr) 是代表代理在时间 t 的偏好的效用函数,p(st+ 1Is, d,) 是代表代理对不确定未来状态的主观信念的马尔可夫转移概率,fit(0, 1) 是代理在未来时期内折现效用的比率。假设代理是理性的:它们的行为遵循最优决策规则 d t = (~(St),该规则求解 vr(s) - max~ Eo { E r o fltu(s,, d,)l So = s},其中 Ea 表示对由决策规则 6 引起的受控随机过程 {s,,dt} 的期望。动态规划方法 min9 提供了一种建设性的过程,用于计算 6,使用价值函数 V r 作为“影子价格”,将复杂的随机/多周期优化问题分散为一系列更简单的确定性/静态优化问题。
船舶结构委员会赞助开发了一个数据库,涵盖用于海洋应用的钢材的韧性。努力的重点是识别和获取包含定量韧性数据的数据源,并根据这些数据开发一个记录完好的计算机化数据库,供广大工程师和材料科学家使用。其中包括来自材料供应商的原始数据以及来自各种组织发表的论文和技术“报告的数据。主要关注拉伸、夏比 V 型缺口棒冲击值、断裂韧性 (JIc)、NDTT 和 DT 能量;如果同一批次的材料有其他韧性参数,则包括这些参数。材料包括代表赞助机构的项目技术委员会““确定的钢材。数据库中包含了大约 1000 条记录,代表了大约 10,000 次 &leven 钢测试。现已存在标准程序,可以有效地添加其他合金和性能的数据。