由于深度学习在生成建模方面取得了突破。Ian Goodfellow 在人脸生成 [ 5 ] 和 StyleGan [ 7 ]、Openai 的 GPT-2 [ 9 ] 或最近 Mark Zuckerberg [ 4 ] 和 Bill Gates [ 10 ] 的深度伪造视频是 AI 生成内容的突出例子,这些内容几乎与人类生成的内容没有区别。这些例子还凸显了生成 AI 带来的一些重大社会、道德和组织挑战,包括安全性、隐私、所有权、质量指标和生成内容的评估。本次研讨会的目标是汇集 HCI 和 AI 领域的研究人员和从业者,从 HCI 角度探索生成建模的机遇和挑战。我们设想,创建物理和数字产品的用户体验将成为人类和人工智能的合作:人类将扮演规范、目标设定、指导、高级创造力、策划和治理的角色。人工智能将通过灵感、低级创造力和细节工作以及大规模测试想法的能力来增强人类的能力。鼓励以短文、长文和演示的形式提交符合 IUI 论文和演示指南的论文,但不限于以下主题:
由于使用深度学习的生成建模取得了突破。Ian Goodfellow 在人脸生成方面的工作 [ 5 ] 和 StyleGan [ 7 ]、Openai 的 GPT-2 [ 9 ] 或最近的 Mark Zuckerberg [ 4 ] 和 Bill Gates [ 10 ] 的深度伪造视频是 AI 生成内容的突出例子,这些内容几乎与人类生成的内容没有区别。这些例子还强调了生成 AI 带来的一些重大社会、道德和组织挑战,包括安全性、隐私、所有权、质量指标和生成内容的评估。本次研讨会的目标是汇集 HCI 和 AI 领域的研究人员和从业者,从 HCI 角度探索生成建模的机遇和挑战。我们设想,创建物理和数字工件的用户体验将成为人类和人工智能的合作伙伴关系:人类将扮演规范、目标设定、指导、高级创造力、策划和治理的角色。人工智能将通过灵感、低级创造力和细节工作以及大规模测试想法的能力来增强人类的能力。鼓励以短文、长文和演示的形式提交,并遵循 IUI 论文和演示指南,但不限于以下主题:
摘要:医学成像中深度学习的快速发展显着增强了人工智能的能力,同时引入了挑战,包括需要大量培训数据以及标记和分割的劳动密集型任务。生成的对抗网络(GAN)已作为解决方案出现,为数据增强提供合成图像生成,并通过CGAN,Cyclegan和StyleGan等模型来简化医疗图像处理任务。这些创新不仅提高了图像增强,重建和分割的效率,而且还为无监督的异常检测铺平了道路,从而显着降低了对标记数据集的依赖。我们对医学成像中GAN的调查涉及其各种体系结构,选择适当的GAN模型的考虑以及模型培训和绩效评估的细微差别。本文旨在为盖恩技术新手提供透彻理解的放射科医生,通过使用Cyclegan和Pixel2Style2pixel(PSP)commbined styleth的样式进行两个说明性示例,通过对脑成像中的gans进行实际应用和评估。它对医学成像研究中gan的变革潜力进行了全面的探索。最终,本文努力使放射科医生提供有效利用gan的知识,从而鼓励该领域的进一步研究和应用。
由于具有促进安全性和散装嵌入能力的潜力,生成图像隐志的最新进展引起了人们的关注。但是,通常用于特定任务的生成隐志方案,并且几乎不应用于具有实际约束的应用。为了解决这个问题,本文提出了一种通用的生成图像steganography方案,称为隐肌Stylegan(Stegastylegan),该方案符合同一框架内的安全性,容量和稳健性的实际目标。在Stegastylegan中,使用新颖的分布保护秘密数据模块(DP-SDM)用于通过保留模型输入的数据分布来实现可证明的固定构成图像隐肌。此外,发明了一种通用和有效的秘密数据提取器(SDE),以进行准确的秘密数据提取。通过选择是否在训练过程中合并图像攻击模拟器(IAS),一个人可以获取两个具有不同参数但相同结构(发电机和提取器)的模型,以进行无损和有损的通道隐秘通信,即Stegastylegan-ls and Stegastylegan和Stegastylegan。此外,通过与GAN倒置交配,也可以实现有条件的生成型软糖。实验结果表明,无论是对于无损或有损的通信陈列而言,提出的Stegastylegan都可以显着超过相应的最新计划。
a b s t r a c t generativ e Adveranial网络(GAN)经常用于天文学中来构建数值模拟的模拟器。然而,培训甘斯可能会被证明是一项不稳定的任务,因为它们容易出现不稳定,并且经常导致模式崩溃问题。相反,扩散模型还具有在没有对抗训练的情况下生成高质量数据的能力。它在几个自然图像数据集方面表现出了优势。在这项研究中,我们通过一组来自散射变换的强大摘要统计数据进行了降级扩散概率模型(DDPM)(DDPM)(DDPM)(DDPM)(最坚固的gan类型之一)之间的定量比较。特别是,我们利用这两个模型来生成21 cm亮度温度映射的图像,作为一个案例研究,基于天体物理参数有条件地研究,这些参数与宇宙复离的过程相关。使用我们的新fr`echet散射距离(FSD)作为e v aluation指标,以定量比较生成模型和仿真之间的样本分布,我们证明了DDPM在各种训练集的大小上都优于stylegan2。通过Fisher的预测,我们证明,在我们的数据集中,StyleGAN 2以各种方式崩溃,而DDPM产生了更强大的生成。我们还探讨了无分类指导在DDPM中的作用,并仅在训练数据受到限制时才显示出对非零指导量表的偏好。我们的发现表明,扩散模型在生成准确的图像中提供了一种有希望的替代品。这些图像随后可以提供可靠的参数约束,尤其是在天体物理学领域。
生成AI目前是技术中最热门的话题。本动手指南教机器学习工程师和数据科学家如何使用Tensorflow和Tensorflow和Keras从头开始创建令人印象深刻的生成深度学习模型,包括变异自动编码器(VAE),生成对抗网络(GAN),变形金刚,变形金刚,正常流量,基于能量的模型,基于能量的差异模型,以及基本的架构架构。Through tips and tricks, you'll learn how to make your models more efficient and creative.Discover how VAEs can change facial expressions in photosTrain GANs to generate images based on your own datasetBuild diffusion models to produce new varieties of flowersTrain your own GPT for text generationLearn how large language models like ChatGPT are trainedExplore state-of-the-art architectures such as StyleGAN2 and ViT-VQGANCompose polyphonic music使用变形金刚和博物馆构成生成世界模型如何将增强学习任务求解到诸如dall.e 2,Imagen和稳定扩散等多模型模型中,这本书还探讨了生成AI的未来及其具有竞争优势的潜力。生成AI目前是技术中最热门的话题。本动手指南教机器学习工程师和数据科学家如何使用Tensorflow和Keras从头开始创建令人印象深刻的生成深度学习模型,包括VAE,gans,gans,transformers,“标准化流量”,“基于能量”的模型,基于能量的模型以及扩散的扩散模型。这本书以基本的深度学习概念和高级体系结构为基本的深度学习概念开始。和概率理论,正如某些模型使用数学符号描述的那样。Through tips and tricks, you'll learn how to make your models more efficient and creative.Discover how VAEs can change facial expressions in photosTrain GANs to generate images based on your own datasetBuild diffusion models to produce new varieties of flowersTrain your own GPT for text generationLearn how large language models like ChatGPT are trainedExplore state-of-the-art architectures such as StyleGAN2 and ViT-VQGANCompose polyphonic music使用变形金刚和博物馆构成生成世界模型如何将增强学习任务解决成多模型,例如Dall.e 2,Imagen和稳定的扩散,这本书还深入研究了生成AI的未来及其具有竞争优势的潜力。要开始使用Python,请访问Learningpypython.org获取免费资源,这些资源将帮助您发展足够的知识来与本书中的示例合作。对线性代数(矩阵乘法等)有牢固的了解也很重要另外,请确保您有一个可以从GitHub存储库中运行代码示例的环境。不用担心您是深度学习的新手 - 您不需要昂贵的硬件即可像GPU一样开始培训模型。实际上,在投资硬件之前了解基础知识更为重要。本书将向您展示如何在自己的数据上培训自己的生成模型,而不是依靠预训练的模型。我们将从第一原则中深入研究这些模型的架构和设计,因此您可以完全了解它们如何使用Python和Keras进行编码。科学家们正在破解代码以复制一些最具开创性的生成深度学习模型,例如变化自动编码器,生成的对抗性网络(GAN),编码器模型和世界模型。在本文中,专家David Foster带领读者从深度学习的基础上到彻底改变该领域的出血 - 边缘算法的旅程。通过分享技巧和技巧,您将深入了解如何优化模型以提高性能和创造力。动手实践实用的GAN示例,例如Cyclegan for Style Transfer和Musegan for Music Generation。学习如何制作复发性生成模型来生成文本,并使用注意机制改进它们。探索生成模型如何授权代理在加强学习框架内处理复杂的任务。最后,深入研究了基于变压器的模型,例如Bert和GPT-2,以及Progan和StyleGan等图像生成技术。