图 S11。a) 0.01 V-3 V 范围内 0.2 mV s -1 的 CV b) NGA-CMP 最初五次循环期间 0.1 A g -1 的恒电流充电/放电。在第一次阴极扫描期间,1.06 V 处的明显峰归因于 Na + 插入 NGA-CMP,而 0.52 V 处的宽峰可归因于伴随 Na + 插入的 SEI 形成。1 从第二次循环开始,CV 曲线几乎重叠,表明本材料具有优异的可逆性和循环稳定性。 0.67 V 处出现宽阴极峰,符合化学相互作用的电容过程,NGA-CMP 在 0.4 V-0.01 V/0.01 V-0.82 V 和 1.22 V-0.38 V/0.62 V-1.35 V 附近呈现两条可逆曲线,与恒电流循环曲线一致。第一条斜线属于钠离子插入和从孔隙中脱出,这在 Sb@NGA-CMP 中并不明显。第二条斜线与吡嗪位点有关。2
图S2。 原子力显微镜(AFM)图像分析了新的化学去角质MOS 2。 (a)Si底物表面上自旋涂层SL-MOS 2的AFM图像和(b)垂直于C轴的2-H MOS 2结构的模型,100片薄片在0.6-0.7nm之间扫描。 此SL-MOS 2纳米片的横向尺寸约为20-40 nm。 (c)可以看出,单个层的台阶高度为0.6-0.7 nm,可与Ca相当。 单层S-MO-S构建块的0.65 nm。 对锂去角质方法产生的100片片的统计分析表明,有56%的薄片为单层,其中两层中有28%,三层中的13%等等。 平均地形高度约为1.04 nm,与SL-MOS 2的典型高度相符,并且存在水分子(在0.6至1.0 nm之间)[9]。图S2。原子力显微镜(AFM)图像分析了新的化学去角质MOS 2。(a)Si底物表面上自旋涂层SL-MOS 2的AFM图像和(b)垂直于C轴的2-H MOS 2结构的模型,100片薄片在0.6-0.7nm之间扫描。此SL-MOS 2纳米片的横向尺寸约为20-40 nm。(c)可以看出,单个层的台阶高度为0.6-0.7 nm,可与Ca相当。单层S-MO-S构建块的0.65 nm。 对锂去角质方法产生的100片片的统计分析表明,有56%的薄片为单层,其中两层中有28%,三层中的13%等等。 平均地形高度约为1.04 nm,与SL-MOS 2的典型高度相符,并且存在水分子(在0.6至1.0 nm之间)[9]。单层S-MO-S构建块的0.65 nm。对锂去角质方法产生的100片片的统计分析表明,有56%的薄片为单层,其中两层中有28%,三层中的13%等等。平均地形高度约为1.04 nm,与SL-MOS 2的典型高度相符,并且存在水分子(在0.6至1.0 nm之间)[9]。