摘要 目的:利用源自发作间期颅内脑电图 (EEG) 的功能相关网络预测术后无癫痫发作已取得一些成功。然而,还有一些重要的挑战需要考虑:(1) 物理上彼此靠近的电极自然倾向于更相关,从而导致空间偏差;(2) 不同患者的植入位置和电极数量不同,使得跨受试者比较困难;(3) 功能相关网络可能随时间而变化,但目前假定为静态的。方法:在本研究中,我们使用来自 55 名难治性局灶性癫痫患者的颅内脑电图数据来解决这三个挑战。患者还接受了术前磁共振成像 (MRI)、术中计算机断层扫描和术后 MRI 检查,以便准确定位电极并描绘出切除的组织。结果:我们表明,对附近电极之间的空间接近度进行标准化可提高对术后癫痫发作结果的预测。此外,电极覆盖范围更广的患者更有可能正确预测其结果(受试者工作特征曲线下面积 > 0.9,P « 0.05),但不一定更有可能获得更好的结果。最后,无论分析的时间段如何,我们的预测都是可靠的。意义:未来的研究应考虑功能网络构建中电极的空间接近度,以改善术后癫痫发作结果的预测。切除和保留组织的覆盖范围越大,预测的准确性就越高。
背景:切除的完整性是卵巢癌患者的关键预后指标,而肿瘤靶向荧光图像引导手术 (FIGS) 的应用提高了细胞减灭术中腹膜转移的检测率。CD24 在卵巢癌中高表达,已被证明是肿瘤靶向成像的合适生物标志物。方法:研究了高级别浆液性卵巢癌 (HGSOC) 的细胞系和异质患者来源的异种移植 (PDX) 肿瘤样本中的 CD24 表达。将单克隆抗体 CD24 与 NIR 染料 Alexa Fluor 750 结合并评估最佳药理参数 (OV-90,n = 21) 后,对原位 HGSOC 转移性异种移植 (OV-90,n = 16) 进行了实时反馈的细胞减灭术。将术中 CD24 靶向荧光引导的影响与单独的白光和触诊进行了比较,并在术后监测疾病复发(OV-90,n = 12)。在四种临床注释的转移性 HGSOC 原位 PDX 模型中进一步评估了 CD24-AF750,以验证术中引导的转化潜力。结果:与原位 HGSOC 异种移植中的标准白光手术相比,CD24 靶向术中 NIR FIG 显着(47.3%)改善了肿瘤检测和切除,并减轻了术后肿瘤负担。CD24-AF750 允许识别四种 HGSOC PDX 中肉眼无法检测到的微小肿瘤病变。解读:CD24 靶向 FIG 具有转化潜力,可作为改善卵巢癌减瘤手术的辅助手段。资金:本研究由 H2020 计划 MSCA-ITN [675743]、Helse Vest RHF 和 Helse Bergen HF [911809、911852、912171、240222、911974、HV1269] 以及挪威癌症协会 [182735] 和挪威研究理事会通过其卓越中心资助计划 [223250、262652] 资助。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)
实施本计划中概述的变更将实现我们的第一个目标,即大幅增加新冠疫情之前的手术数量。这将使我们能够满足新的手术需求,并在大约 17-24 个月内完成因新冠疫情而损失的手术。这个时间表基于我们可以采取的行动;然而,它很容易受到我们无法控制的外部力量的影响。正如亨利医生和全球卫生官员所指出的那样,今年秋天我们可能会迎来第二波新冠疫情,这将再次影响我们的医院和手术。
摘要背景发病率和死亡率数据 (MMD) 以及学习曲线 (LC) 均未提供有关术中错误性质及其机制的信息,因为这些错误会对患者结果产生不利影响。OCHRA 是专门为解决未满足的外科需求而开发的,即在个体操作员层面对手术技术执行质量进行客观评估的技术。本系统评价的目的是评价 OCHRA 作为客观评估外科手术表现的方法。方法系统评价基于在 4 个数据库中搜索 1998 年 1 月至 2019 年 1 月发表的文章。该评价符合系统评价和荟萃分析的首选报告项目 (PRISMA) 指南,并包括基于多个外科专业手术过程中技术错误的外科任务表现的原始出版物。结果 仅有 26 篇已发表的研究符合搜索标准,表明在研究期间 OCHRA 的采用率很低。在 31% 的报告中,手术由完全合格的顾问/主治外科医生执行,69% 的报告中,手术由经批准的培训计划中的外科实习生执行。OCHRA 在 719 例临床手术(平均 = 11 例 CE)的实施过程中发现了 7869 例后果性错误 (CE)。它还确定了手术的“危险区”和熟练度增益曲线 (P-GC),以确认个别实习外科医生能够持续胜任特定手术的执行。P-GC 既是外科医生又是手术。结论 增加 OCHRA 的使用有可能改善手术后患者的预后,但这是朝着自动评估未编辑手术视频迈出的有条件的一步。OCHRA 的低采用率归因于其涉及人为因素(认知工程)专业知识的劳动密集型性质。除了更快、更客观的同行评估外,这一发展还应加速临床采用和在常规外科实践和外科培训中使用该技术。
我们开发了下一代机器人立体定位平台,用于小动物,结合了三维 (3D) 颅骨轮廓仪子系统和完整的六自由度 (6DOF) 机器人平台,以提高空间精度和手术速度。3D 颅骨轮廓仪基于结构照明,其中视频投影仪将一系列水平和垂直线图案投射到动物颅骨上,并由两个二维 (2D) 常规 CCD 相机捕捉,以基于几何三角测量重建精确的 3D 颅骨表面。使用重建的 3D 颅骨轮廓,可以使用基于 Stewart 设计的 6DOF 机器人平台引导和重新定位颅骨,以精确对准手术工具,以达到特定的大脑目标。使用机械测量技术对系统进行了评估,并使用琼脂脑模型演示了平台的精确瞄准。麻醉的单角沙鼠也用于该系统,通过使用玻璃移液器注射染料来瞄准梯形体 (MNTB) 的内侧核。切除的脑切片荧光成像证实了瞄准脑核的准确性。结果表明,这种新的立体定位系统可以提高神经科学研究中小规模脑部手术的准确性和速度,从而加速神经科学发现并降低实验动物的流失率。