Controlling microstructure in fusion-based metal additive manufacturing (AM) remains a challenge due to numerous parameters directly impacting solidification conditions. Multiprincipal element alloys (MPEAs) offer a vast compositional design space for microstructural engineering due to their chemical complexity and exceptional properties. Here, we establish a novel alloy design paradigm in MPEAs for AM using the FeMnCoCr system. By exploiting the decreasing phase stability with increasing Mn content, we achieve notable grain refinement and breakdown of columnar grain growth. We combine thermodynamic modeling, operando synchrotron X-ray diffraction, multiscale microstructural characterization, and mechanical testing to gain insight into the solidification physics and its ramifications on the resulting microstructure. This work paves way for tailoring grain sizes through targeted manipulation of phase stability, thereby advancing microstructure control in AM.
Sergei Gasilov的高级科学家,加拿大光源Sergey Gasilov是加拿大光源的高级科学家,专门从事仪器和技术的开发,用于硬X射线成像和微视频学。他毕业于莫斯科工程物理研究所,后来又在俄罗斯,意大利,日本,法国和德国工作,从而使用不同的X射线来源进行相比的X射线成像。 在他的博士后研究期间,谢尔盖(Sergey)开发了折射成像技术的硬X射线指数,用于对欧洲同步加速器辐射设施的大型生物医学标本进行层析成像检查。 后来,谢尔盖(Sergey)在ANKA同步器源构建了硬X射线成像光束线和显微镜站。 自2018年以来,谢尔盖(Sergey)负责加拿大光源的生物医学成像和疗法(BMIT)束线。 来自加拿大和国外的生物医学研究人员和物质科学家应用BMIT的最先进的工具和软件工具,用于对位于现场,室内和现场的各种标本的3D非破坏性成像。他毕业于莫斯科工程物理研究所,后来又在俄罗斯,意大利,日本,法国和德国工作,从而使用不同的X射线来源进行相比的X射线成像。在他的博士后研究期间,谢尔盖(Sergey)开发了折射成像技术的硬X射线指数,用于对欧洲同步加速器辐射设施的大型生物医学标本进行层析成像检查。后来,谢尔盖(Sergey)在ANKA同步器源构建了硬X射线成像光束线和显微镜站。自2018年以来,谢尔盖(Sergey)负责加拿大光源的生物医学成像和疗法(BMIT)束线。来自加拿大和国外的生物医学研究人员和物质科学家应用BMIT的最先进的工具和软件工具,用于对位于现场,室内和现场的各种标本的3D非破坏性成像。
使用人工智能来处理衍射图像的挑战是需要组装大型且精确设计的训练数据集的挑战。为了解决这个问题,开发了一个称为Resonet的代码库,用于合成这些数据的衍射数据和培训残留神经网络。在这里,共振的两个人均能力:(i)晶体分辨率的解释和(ii)重叠晶格的识别。通过同步加速器实验和X射线自由电子激光实验对衍射图像的汇编进行了测试。至关重要的是,这些模型很容易在图形处理单元上执行,因此可以显着超过常规算法。目前使用共振来为斯坦福同步辐射光源的宏观分子晶体学用户提供实时反馈,但其简单的基于Python的接口使其易于嵌入其他处理框架。这项工作强调了基于物理的模拟对训练深神网络的实用性,并为开发其他模型的开发奠定了基础,以增强衍射收集和分析。
1 Fisika Aplikatuaua Saila,Gipuzkoaako Ingeniaritza Eskola,巴斯克大学大学(UPV/EHU),20018年,西班牙圣塞巴斯蒂安2 20018 San Sebastián, Spain 4 Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA 5 European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex 9, France 6 Ruprecht Haesel Laboratory, Deutsches Elektronen-Synchrotron Desy, 22607 Hamburg, Germany 7 Institut Für Experimentelle und Angewandte Physik, Christian-Albrechts-University Zu Kiel, 24098 Kiel, Germany 8 UGC-Dae Consortium for ScientiFori Rasearch, University Campus, Khandwa Road, COMMIT-452001, India 9 Department de Física Aplicada, Universidade de Santiago de Compostela, 15782西班牙圣地亚哥·德·波斯特拉(Santiago de Compostela),10个学院,伊马图斯研究所,圣地亚哥大学,15782年,圣地亚哥,西班牙圣地亚哥,西班牙11 ISIS设施,STFC Rutherford Appleton实验室,DIDCOT,DIDCOT OXCOT,DIDCOT OXX11 0QX,didcot Oxx 12 Deutsertron,Unitedsectron norkterron norktrron notkrotron。85, 22607 Hamburg, Germany 13 Alba Synchrotron Light Source, 08290 Barcelona, Spain 14 Department of Physical, Computer Sciences and Mathematics, University of Modena and Reggio Emilia, via Campi 213 / A, I-41125 Modena, Italy 15 Center S3, Institute Nanoscienze-Cnr, via Campi 213 / A, I-41125 Modena,意大利16材料(Theos)的理论和模拟,以及国家计算设计与发现新颖材料的发现与发现(Marvel),ÉcolePolytechniquefédéraledeLausanne,1015瑞士洛桑,瑞士17物理学系,特伦托大学,通过Sommari 14,38123 Povo,Itbone,Itbone,Itbons,ITNAL SONNENINES,ITNENINES,ITNENNESISS,ITNENNESNENNES, de Paris,UMR7588,F-75252,法国,法国19号石墨烯实验室,意大利技术基金会,通过Morego,16163年,意大利,欧洲热那亚20欧洲同步辐射设施(ESRF),BP 220,F-38043,F-38043 GRENOBLE CEDEX,GRENOBLE CEDEX,FRANCE 21岁,000 000.意大利22 Alto University Applied Physics系,02150 ESPOO,芬兰23 Ikerbasque,巴斯克科学基金会,48013 Bilbao,西班牙85, 22607 Hamburg, Germany 13 Alba Synchrotron Light Source, 08290 Barcelona, Spain 14 Department of Physical, Computer Sciences and Mathematics, University of Modena and Reggio Emilia, via Campi 213 / A, I-41125 Modena, Italy 15 Center S3, Institute Nanoscienze-Cnr, via Campi 213 / A, I-41125 Modena,意大利16材料(Theos)的理论和模拟,以及国家计算设计与发现新颖材料的发现与发现(Marvel),ÉcolePolytechniquefédéraledeLausanne,1015瑞士洛桑,瑞士17物理学系,特伦托大学,通过Sommari 14,38123 Povo,Itbone,Itbone,Itbons,ITNAL SONNENINES,ITNENINES,ITNENNESISS,ITNENNESNENNES, de Paris,UMR7588,F-75252,法国,法国19号石墨烯实验室,意大利技术基金会,通过Morego,16163年,意大利,欧洲热那亚20欧洲同步辐射设施(ESRF),BP 220,F-38043,F-38043 GRENOBLE CEDEX,GRENOBLE CEDEX,FRANCE 21岁,000 000.意大利22 Alto University Applied Physics系,02150 ESPOO,芬兰23 Ikerbasque,巴斯克科学基金会,48013 Bilbao,西班牙
摘要 - 在最近推出的欧洲合作中,正在调查用于龙门和加速器(同步器)的内部离子治疗磁铁,在欧洲H2020 Hitri Plus和I.Fast计划的框架中,该合作已为超导磁铁提供了一些用于工作包的资金。超导磁体的设计和技术将用于离子治疗同步器,尤其是 - 尤其是龙门,作为430 MeV/nucleon离子(C-ION)的参考光束,具有10个离子/脉冲。磁体的直径约为60-90毫米,4至5 t峰值峰值,磁场的变化约为0.3 t/s,质量良好。本文将说明协作和技术计划的组织。各种超导体选项(LTS,MGB 2或HTS)和不同的磁铁形状,例如经典的Costheta或创新的Canted Costheta(CCT),具有弯曲的多功能(偶极子和四极管),在评估中,CCT为基线。这些研究应为现有设施的新超导龙门设计设计提供设计投入,并在更长的时间范围内,用于将新的强子治疗中心放置在东南欧(Seeiist Project)。
图 6 Li 3(1+ x ) AlP 2 的结构表征 a) 不同退火温度下 Li 3 AlP 2 产物的实验室 XRD。b) 500 ◦ C 退火的微晶 µ c-Li 3(1+ x ) AlP 2 和 c) 300 ◦ C 退火的纳米晶 nc-Li 3(1+ x ) AlP 2 的同步加速器 XRD。d) µ c-Li 2.925 AlP 2 的 Rietveld 细化。e) nc-Li 2.925 AlP 和 f) µ c-Li 2.925 AlP 2 的对分布函数分析。
使用叠层扫描技术,样品被聚焦在微芯片上小点上的相干同步加速器 X 射线束照射,衍射光束由像素检测器在远场检测。样品逐步穿过光束,直到扫描到整个感兴趣的区域。扫描期间照亮的区域需要重叠,导致步长小于光束直径。叠层扫描技术需要过采样,因为检测器只测量强度。使用迭代算法,仍然可以检索衍射同步辐射的相位信息。根据衍射图案、光束形状以及样品与检测器之间的距离,该算法可以将收集的数据重建为高分辨率图像,无论是 2D 还是 3D。简而言之,该算法计算样品后面的波场到达探测器的路径,其中波场的振幅被像素探测器记录的强度数据替换。之后,更新波场并进行另一次迭代。当感兴趣的区域深埋在结构内部时,可能需要事先准备样品。因此,在某些情况下,必须通过聚焦离子束铣削使感兴趣的区域可用于叠层成像。
研究人员和工程师的技术会议分三场并行举行。今年,研讨会还在活动期间举办了展览,共有 26 家参展商(设备制造商和经销商、技术工程)。在研讨会计划中,与会者有机会参观了几个战略地点。第一天,CEA LIST 向实验室敞开大门;访问结束后举行了鸡尾酒晚宴。最后下午,包括三个法国工业旗舰在内的四个工厂迎来了与会者:位于伊夫林省圣康坦的赛峰飞机发动机公司、位于埃朗古的法航零件维修中心、位于莱莫罗的阿丽亚娜集团和位于伊夫林省的Synchrotron -Sun。巴黎萨克雷.最后,本期的另一个新特点是:由布鲁塞尔航空公司和 Cotesa Composites 赞助的学生竞赛。来自大学的八支球队-
最近的理论研究表明,过渡金属钙钛矿氧化物膜可以在红外范围内启用表面声子极化子,而低损失和比散装crys-thals的次波长更强。到目前为止,尚未在实验上观察到这种模式。Here, using a combination of far- fi eld Fourier-transform infrared (FTIR) spec- troscopy and near- fi eld synchrotron infrared nanospectroscopy (SINS) ima- ging, we study the phonon polaritons in a 100 nm thick freestanding crystalline membrane of SrTiO 3 transferred on metallic and dielectric sub- strates.我们观察到一种对称 - 抗对称模式的分裂,从而产生了Epsilon-near-Zero和Berreman模式,以及高度构型(以10倍)传播声子偏振子,这两者都是由膜的深度亚波厚度造成的。基于分析有限二极管模型和数值差异方法的理论建模充分证实了实验结果。我们的工作揭示了氧化物膜作为红外光子学和偏光元素的有前途的平台的潜力。
先进光源 (ALS) 是一个基于电子储存环的同步辐射设施,由美国能源部基础能源科学计划 (DOE-BES) 提供支持。ALS 于 1993 年开始运行,此后不断升级,一直是世界上最亮的软 x 射线源之一。ALS 针对使用来自软 x 射线波荡器源的强光束的 x 射线光谱、显微镜和散射进行了优化,但也为更广泛的社区提供服务,这些社区使用来自超导磁体、传统偶极磁体和插入装置的硬 x 射线、红外 (IR) 和真空紫外 (VUV) 辐射进行研究。1.9 GeV 环在 40 多条光束线上拥有世界一流的终端站和仪器,为近 1700 名用户提供服务,他们每年出版 800 多份出版物,并在能源科学、地球和环境科学、材料科学、生物学、化学和物理学领域开展基础、应用和工业研究。我们的使命是向广大科学界提供我们世界一流的同步加速器光源能力和专业知识,推动科学进步,造福社会。发展、维护和支持一个充满活力和多样化的用户社区对于 ALS 作为用户设施的成功至关重要。为了吸引社区,ALS 科学家通过多种渠道与社区进行接触,包括参加会议、组织研讨会以及参加董事会和审查委员会。