以下出版物Jing,X.,Li,H.,Mi,H.-Y.,Feng,P.-Y.,Tao,X.,Liu,Y.,Liu,C。,&Shen,C。(2020)。具有坚硬的界面键合和高能量输出的柔性半透明双电凝胶水凝胶基于底环的纳米生成器[10.1039/c9tc06937b]。材料化学杂志C,8(17),5752-5760可在https://dx.doi.org/10.1039/c9tc06937b上找到。
Near-Infrared Heterojunction Field Modulated Phototransistors with Distinct Photodetection/Photostorage Switching Feature for Artificial Visuals Jiayue Han, 1, † Xiaoyang Du, 1, † Zhenghan Zhang, 2,3, † Zeyu He, 1 Runzhang Xie, 3 Chongxin Shan, 4 Silu Tao, 1, * Weida Hu, 3, * Ming Yang,1 Jun Gou,1,5 Zhiming Wu,1,5 Yadong Jiang 1,5和Jun Wang 1,5, * 1.光电科学与工程学院,中国电子科学与技术,成都610054,Chengdu 610054,中国中国2. Satate of Microeleelelecroelecroelecroelectronic,Farhans,Shanghanghanghans,Shanghanghand Shadhanghandshaghan。3.上海技术物理研究所的省关键实验室,中国科学院,Yutian Road 500,上海,200083年,Yutian Road,200083,4.Henan钻石光电材料和设备的Henan Key实验室,物理与工程学院,Zhengzhou University,Zhengzhou University,Zhengzhou University,Zhengzhou 450001 Y50001,PROF.G.G.G.G.G.G.G.G.G.G. GR.G. GR.G. GR.I. GR.I. g. g。 Jiang,J。Wang教授5.国家电子薄膜和集成设备的主要实验室,中国电子科学与技术大学,成都610054,中国†这些作者为这项工作做出了同样的贡献。*Silu Tao:电子邮件:silutao@uestc.edu.cn *Weida Hu:电子邮件:wdhu@mail@mail.sitp.ac.cn *jun wang:jun wang:wjun@uestc.edu.cn
学分和联系时间:3个学分,3个联系时间讲师:Tao Han博士,电子邮件:tao.han@njit.edu目录课程描述:本课程是为学生准备机器学习和人工智能的新环境。该课程由两个主要部分组成:1)基本应用机器学习技术,包括深度学习,回归,分类,卷积神经网络,生成的对抗性网络和模型压缩; 2)介绍Pytorch,Colab和Jupyter笔记本,并为学生提供开发和实施机器学习解决方案的实践经验。
“ Digital Twins”一词出现在David Gelernter的1993年书中,名为《 Mirror Worlds:or Day Software》将宇宙放在鞋盒中。它将如何发生以及它的含义。在一句话中,数字双胞胎是“机器或系统的虚拟副本”(Tao and Qi,2019年)。更详细地说,它们是“柔和的计算机模型”,它们“反映了产品,过程或服务的每个方面”,可以实时通过传感器收集的数据来不断更新(Tao and Qi,2019)。这样的双胞胎不仅允许可视化,还允许对未来情景的实验和预测(Wickramasinghe等,2022),从微观到宏。他们首先出现在工程学中测试产品,但现在已经被试行在许多情况下从物流管理到全球变暖,在许多情况下勾勒出解决方案和抢占问题。能源综合使用数字双胞胎来跟踪风力涡轮机的运营,而NASA自1960年代以来一直使用数字副本(即,航天器的飞船来监视其状态)(Dang等人,2023年)。新加坡是世界上第一个拥有数字双副本的国家,街道街。动态双向映射是数字双胞胎的关键方面之一,它可以收集现实世界数据并允许实时模拟物理实体(Wickramasinghe等,2022),以及其分析性和预测性的可结合性(Katsoulakis et al。,2024)。在他们被试用的许多领域中是医学,包括心脏病学,皮肤病学,老年医学,不良疾病,内科,肿瘤学,骨科和放射学专业。我们现在更接近镜子世界
1 Krausz,F。&Ivanov,M。Attosecond Physics。修订版mod。物理。81,163,(2009)。 2 Corkum,P。&Krausz,F。Attosecond Science。 nat。 物理。 3,381-387,(2007)。 3 Nisoli,M。&Sansone,G。Attosecond Science的新边界。 prog。 量子。 电子。 33,17-59,(2009)。 4 Ghimire,S。等。 观察大量晶体中高阶谐波产生。 nat。 物理。 7,138-141,(2011)。 5 Cavalieri,A。L.等。 凝结物质中的光谱法。 自然449,1029-1032,(2007)。 6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。81,163,(2009)。2 Corkum,P。&Krausz,F。Attosecond Science。 nat。 物理。 3,381-387,(2007)。 3 Nisoli,M。&Sansone,G。Attosecond Science的新边界。 prog。 量子。 电子。 33,17-59,(2009)。 4 Ghimire,S。等。 观察大量晶体中高阶谐波产生。 nat。 物理。 7,138-141,(2011)。 5 Cavalieri,A。L.等。 凝结物质中的光谱法。 自然449,1029-1032,(2007)。 6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。2 Corkum,P。&Krausz,F。Attosecond Science。nat。物理。3,381-387,(2007)。 3 Nisoli,M。&Sansone,G。Attosecond Science的新边界。 prog。 量子。 电子。 33,17-59,(2009)。 4 Ghimire,S。等。 观察大量晶体中高阶谐波产生。 nat。 物理。 7,138-141,(2011)。 5 Cavalieri,A。L.等。 凝结物质中的光谱法。 自然449,1029-1032,(2007)。 6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。3,381-387,(2007)。3 Nisoli,M。&Sansone,G。Attosecond Science的新边界。prog。量子。电子。33,17-59,(2009)。4 Ghimire,S。等。观察大量晶体中高阶谐波产生。nat。物理。7,138-141,(2011)。 5 Cavalieri,A。L.等。 凝结物质中的光谱法。 自然449,1029-1032,(2007)。 6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。7,138-141,(2011)。5 Cavalieri,A。L.等。凝结物质中的光谱法。自然449,1029-1032,(2007)。6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。6 Hassan,M。T.等。光学脉冲并跟踪结合电子的非线性响应。自然530,66-70,(2016年)。7您,Y。S。等。无定形固体中的高谐波产生。自然通讯8,1-5,(2017)。8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。8 Paasch-Colberg,T。等。半导体中电流的亚周期光控制:从多光子到隧道状态。Optica 3,1358-1361,(2016)。9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。9 Koya,A。N.等。超快等离子体学的进步。应用物理评论10,(2023)。10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。10 Heide,C。等。电子相干性和在石墨烯中电子光控制中的相干性。Nano Letters 21,9403-9409,(2021)。11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。11 Lucchini,M。等。通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。12 Tao,Z。等。12 Tao,Z。等。自然通信12,1021,(2021)。直接对固体光发射中ATTSENT最终寿命的时间域观察。科学353,62-67,(2016)。13 Lucchini,M。等。 在多晶钻石中的动态动力学Franz-keldysh效应。 科学353,916-919,(2016)。 14 Baudisch,M。等。 石墨烯中狄拉克费物的超快非线性光学响应。 自然通讯9,1018,(2018)。 15 Hui,D.,Alqattan,H.,Sennary,M.,Golubev,N。&Hassan,M。Attosecond Electron显微镜和衍射。 在印刷中,(2024)。13 Lucchini,M。等。在多晶钻石中的动态动力学Franz-keldysh效应。科学353,916-919,(2016)。14 Baudisch,M。等。石墨烯中狄拉克费物的超快非线性光学响应。自然通讯9,1018,(2018)。15 Hui,D.,Alqattan,H.,Sennary,M.,Golubev,N。&Hassan,M。Attosecond Electron显微镜和衍射。在印刷中,(2024)。
• Jia Li、Lei Cao、Yaqian Zhao、Jinghan Shen、Lei Wang、Mingfeng Feng、Min Zhu、Yonghao、Richard Kormelink、Xiaorong Tao、Xiangxi Wang:正孢子病毒复制机制激活及其利巴韦林双重靶向抑制的结构基础 • Kikyo Watanabe、Kazuhiro Ishibashi:宿主 ESCRT 成分是酵母复制子系统中 TSWV 核糖核蛋白复合物形成所必需的。 • 冯明峰、郭荣、袁玉龙、刘琴海、高玉廷、张天一、左文宇、李佳、朱敏、张仲凯、陶晓荣:m6A RNA 甲基化正向调节番茄斑萎病毒的感染。 • Victor Sanchez-Camargo、Gertjan Kramer、Harrold van den Burg:植物部署病毒特异性 RNA 结合蛋白质组反应来对抗病毒感染 • Kaili Xie、Zhongtian Xu、Qingling Qi、Yanjun Li、Xiaodi Hu、Wenkai Yan、Jianping Chen、Zongtao Sun:多种 RNA 病毒效应物共同促进植物 AGO4 降解以促进感染。 • Michel Yvon、Thomas German、Diane Ullman、Yannis Michalakis、Stéphane Blanc:番茄斑萎病毒遗传信息的包装正在分离三个基因组片段
自动化使软件工程更有效。在我们看来,我们主张研究界退后一步(不要只是简单地应用人工智能技术),探索利用人工智能技术和其他技术(如程序分析)在软件工程解决方案中注入智能。开放的研究问题包括如何定义或确定软件工程解决方案的智能水平,如何为软件工程解决方案带来高水平的智能,以及如何协同整合机器智能和人类智能(如领域知识或洞察力)以有效应对具有挑战性的软件工程问题。此外,我们主张研究界调查所提出的智能解决方案所做的假设在软件工程实践中是否有效,例如,用于机器学习的训练数据的代表性是否足以满足实际实践的要求 [7]。智能软件的软件工程。对智能软件的安全性和控制能力信心不足限制了智能软件在现实世界中的部署范围 [2]。此外,人工智能软件的安全性越来越受到关注,促使最近对对抗性机器学习进行了活跃的研究 [4,5]。为了确保智能软件的可靠性,软件测试技术在实践中得到了广泛的应用,但测试预言是一个众所周知的挑战[3, 6]。
精选出版物和输出[1] Wessel,Mairieli,Joseph Vargovich,Marco A. Gerosa和Christoph Treude。“ github动作:对拉请求过程的影响。”经验软件工程28,否。6(2023):1-35。[2] Shimada,Naomichi,Tao Xiao,Hideaki Hata,Christoph Treude和Kenichi Matsumoto。“ GitHub赞助商:探索一种为开源贡献的新方法。”在第44届国际软件工程会议论文集,pp。1058- 1069。2022。[3] Kula,Raula Gaikovina和Christoph Treude。“战争与和平:世界政治对软件生态系统的影响。”在第30届ACM联合欧洲软件工程会议论文集和软件工程基础的研讨会上,pp。1600-1604。2022。[4] Xiao,Tao,Hideaki Hata,Christoph Treude和Kenichi Matsumoto。“用于拉的请求描述的生成AI:采用,影响和开发人员干预措施。”ACM在软件工程1上的会议记录,第1期。FSE(2024):1043-1065。 [5]高,高尤,曼索尔·扎赫迪,克里斯托夫·特雷德,萨里塔·罗森斯托克和马克·舒恩。 “记录开源AI模型中的道德注意事项。” 在第18 ACM/IEEE国际经验软件工程和测量研讨会上 177-188。 2024。 [6] Reboucas de Almeida,Rodrigo,Rafael do Nascimento Ribeiro,Christoph Treude和UiráKulesza。 “以商业为导向的技术债务优先级:工业案例研究。” 74-83。FSE(2024):1043-1065。[5]高,高尤,曼索尔·扎赫迪,克里斯托夫·特雷德,萨里塔·罗森斯托克和马克·舒恩。“记录开源AI模型中的道德注意事项。”在第18 ACM/IEEE国际经验软件工程和测量研讨会上177-188。2024。[6] Reboucas de Almeida,Rodrigo,Rafael do Nascimento Ribeiro,Christoph Treude和UiráKulesza。“以商业为导向的技术债务优先级:工业案例研究。”74-83。2021年IEEE/ACM国际技术债务会议(TechDebt),pp。IEEE,2021。
Jiangtao Hu 1 , Hongbin Wang 1 , ∗ , Biwei Xiao 2 , ∗ , Pei Liu 1 , Tao Huang 1 , Yongliang Li 1 , Xiangzhong Ren 1 , Qianling Zhang 1 , ∗ , Jianhong Liu 1 , ∗ , Xiaoping Ouyang 3 and Xueliang Sun 4 , 5 , ∗ 1 Graphene Composite Research Center, College of深圳大学化学与环境工程,深圳518060,中国; 2 Grinm(广东)高级材料与技术研究所,佛山528051,中国; 3西安格坦大学材料科学与工程学院,中国411105; 4西安大略大学机械与材料工程系,安大略省N6A 5B9,加拿大和5东部高级研究所,东部技术研究院,宁波315020,中国