我会像宇航员一样慢慢走路! 我会用安静、内敛的声音说话。 我只触摸可以触摸的东西。 如果我迷路了或者不知道该怎么做,我会寻求帮助。 我会经常洗手,确保每个人的安全。 我会一直和我的团队或家人在一起。
背景。在恒星对流区中,运动粘度与热扩散率之比,即普朗特数,远小于 1。目的。这项工作的主要目标是研究对流流动和能量传输的统计数据与普朗特数的关系。方法。采用笛卡尔几何中可压缩非旋转流体动力对流的三维数值模拟。对流区 (CZ) 位于两个稳定分层的层之间。在大多数情况下,熵波动扩散的主要贡献来自亚网格尺度扩散率,而平均辐射能量通量则由采用 Kramers 不透明度定律的扩散通量介导。在这里,我们分别研究上流和下流的统计和传输特性。结果。体积平均均方根速度随普朗特数的减小而增加。同时,下行流的填充因子会降低,导致在较低的普朗特数下,下行流平均会更强。这导致对流过冲对普朗特数有很强的依赖性。速度功率谱不会随着普朗特数的变化而发生明显变化,但对流层底部附近除外,因为那里垂直流占主导地位更为明显。在最高雷诺数下,速度功率谱与 Bolgiano-Obukhov k − 11 / 5 的兼容性比与 Kolmogorov-Obukhov k − 5 / 3 的兼容性更好
摘要 尽管在发现新原子核、建模微观原子核结构、核反应堆和恒星核合成方面取得了进展,但我们仍然缺乏系统工具(例如网络方法)来了解 JINA REACLIB 中编译的 7 万多种反应的结构和动力学。为此,我们开发了一个分析框架,通过计算进入和离开任何目标核的中子和质子数,可以很容易地知道哪些反应通常是可能的,哪些是不可能的。具体而言,我们在此组装一个核反应网络,其中节点代表核素,链接代表核素之间的直接反应。有趣的是,核网络的度分布呈现双峰分布,与无标度网络的常见幂律分布和随机网络的泊松分布明显不同。基于 REACLIB 中截面参数化的动力学,我们意外地发现,对于速率低于阈值 λ < e − T γ 的反应,该分布具有普遍性,其中 T 是温度,γ ≈ 1.05。此外,我们发现了三条控制核反应网络结构模式的规则:(i)反应类型由链接选择决定,(ii)在核素 Z vs N 的二维网格上,反应核素之间的网络距离很短,(iii)每个节点的入度和出度都彼此接近。通过结合这三个规则,无论核素图如何扩展,我们的模型都可以普遍揭示隐藏在大型密集核反应网络中的底层核反应模式。它使我们能够预测代表尚未发现的可能的新核反应的缺失环节。
提交内容 商业太空采矿尚处于早期发展阶段,私营公司已开始努力在太空中开采有用材料。加拿大是《阿尔特弥斯协定》的签署国,并已承诺作为主要利益相关者参与月球门户的开发。因此,加拿大承诺参与月球探索和使用月球资源,以支持地月轨道和月球表面的车辆和人员交通。 私营部门进行太空采矿的理由包括两种情况。一种情况是从地球附近的小行星上发现和开采有价值的资源(例如铁矿石、镍和浓度远高于地球上的贵金属),并在月球上开采水和稀土元素。这些资源的市场价值估计达数万亿美元。第二种情况是开采小行星和月球上的水,这些水可以作为政府和私营公司太空行动的重要资源。事实上,目前对轨道加油站的需求已经存在,OrbitFab 和洛克希德马丁等公司正在努力实现这一目标,他们正在提供购买月球开采水的合同。这应该会让投资者对该行业的中期盈利能力更有信心。
在论文初步设计的基础上,本文总结了从比邻星附近返回科学数据的低质量星际探测器群的下行链路,其中最关键的技术问题,并在整个系统设计的背景下解释了它们的重要性。主要目标是确定如果使用目前可用的现成技术构建这样的下行链路,将面临哪些主要挑战或障碍,从而为未来对组成设计挑战和技术的研究提供方向和动力。虽然没有任何基本的物理限制会阻碍这种通信系统,但目前可用的技术在几个方面存在严重不足,还有其他一些重大的设计挑战,其解决方案尚不确定。已确定的最大挑战是质量限制、从多个探测器到同一目标系外行星的多路复用同时通信、姿态控制和指向精度以及由于探测器速度不确定性导致的多普勒频移。最大的技术挑战是电力、高功率和波长灵活的光源、选择性强且波长灵活的光学带通滤波器组以及暗计数率极低的单光子探测器。对于其中的一个关键子集,我们描述了我们遇到的困难的性质及其在整个系统环境中的起源。我们还考虑了将接收限制为单个探测器的接收器,并将其与群体情况进行了比较。
另一种可能性是永动机,在这方面,星际飞船的速度是第二个问题,但第一个问题是如何设计这样一个物体,使其在没有任何燃料或外部阈值或触发器的情况下永远运动下去。用于星际旅行的最多的概念是量子泡沫或宇宙时空结构的“曲速引擎”,这个概念是创造这样的曲速引擎,它可以扭曲时空或在超空间中旅行。由于量子力学效应,量子泡沫是空间结构中每个小尺度上的时空波动。高维运输飞船也具有四维或更像太空中的宇宙立方的导航能力,可以探索和进入新的不同的宇宙,这个宇宙有完全不同的规律、物体、行星、恒星和形状,有可能出现与人类相比最具智慧的生命形式。黑洞、虫洞和超空间可以使这一切成为可能,但这方面需要超高速宇宙飞船,因为在“事件视界”甚至光也无法通过奇点,而奇点处的引力巨大,时间在这里终结。我担心,要前往数十亿万光年之外的星系、超级星系团、星际、多元宇宙或最终存在的全能宇宙,我们需要这样一种运输飞船,其速度是光速的几倍。因此解决方案可能是基于“超光速”粒子或基于第赫子粒子的航天器工程,这是一种假设的粒子,其速度总是比光速快。另外,另一种可能性是基于“中微子”的宇宙飞船进行星际或太空旅行,中微子是一种与电子非常相似的亚原子粒子,但不带电荷,质量可以忽略不计,可以假设为零。
现代怀疑论者可能会问的基本问题是:“为什么要执行星际任务?”仅在二十多年前,其他怀疑论者也发表了类似的话,即“为什么要去月球?”尽管与等待整个银河系中我们探索机器的发现相比,这些尚未发现的科学宝藏包含许多世界上有许多有趣和奇怪现象的世界,但这些尚未发现的科学宝藏是适度的,甚至可能是微不足道的。自1957年太空时代的黎明以来,星际旅行已经从梦想过渡到现实。人类的新梦想现在是星际旅行\大多数当代技术有远见的人都表明,如果我们选择永远留在我们的宇宙摇篮中,我们将无法作为一个物种繁荣起来(甚至最终生存)。实际上,人类基本上仍处于危险之中,直到我们永久扩展到本地星球的祖先生物圈超越太阳系。星际旅行为我们提供了真正长期生存的人类生活。在我们的地球在由于宇宙灾难(例如,小行星的影响)或人类愚蠢(例如,全部核战争)而变得无居住之前,当然,在我们的太阳去世之前(从现在起约50亿年)(我们必须从现在起约50亿年)(我们必须建立技术,政治,政治和经济基础设施,才能从中获得“到达星星”。本文探讨了一个复杂的机器人航天器系列的重要作用,即我们的合作伙伴和机器先驱在通过银河系的命运之旅中发挥作用。[1-4]