响应于2013年欧洲粒子物理战略的建议,这是对所谓的高能LHC(HE-LHC)CERN进行能源升级的概念设计工作,作为未来圆形围栏研究的一部分。HE-LHC机器(旨在在现有的LHC隧道中使用16吨磁铁技术)将在27 TEV(〜2×LHC)的质子碰撞中提供质子碰撞,总储存的能量为1.34 gJ(〜4×LHC)。通过调整LHC准直探针,构思了He-LHC的Betatron清洁插入的第一个布局,需要维持至少10秒钟的次数,即约1.86兆瓦的影响,对应于12分钟的光束寿命,而无需诱导任何磁铁淬火或对其他加速度造成任何损坏。在本文中,我们通过粒子跟踪和相互作用计算评估了HE-LHC机器在HE-LHC机器中质子束操作的准直插入的功率沉积。通过三步模拟方法评估了对温暖元件以及超导分散抑制磁体的束损失影响。尤其是对于未来提议的高能LHC,我们证明了在分散抑制器中添加局部准直仪的必要性,并且我们发现了准直插入中梁线“ Dogleg”的有害后果。
这个问题的问题探讨了LHC在高能量边界(P40)的前10年物理学的巨大影响,并在此期间听到了那些处于机器敏锐的末端的人和实验(P33)的声音。LHC的故事还有很长的路要走,它与Ligo有相似之处,并寻求检测引力波。在1987年,当CERN理事会成立的计划小组建议使用高幼体质子 - 普罗顿对撞机,质量为13-15 TEV时,Ligo刚刚成立为Caltech/MIT项目。LIGO的现场建设始于1994年,即LHC批准的那一年,二十年后,这两个基础设施使历史悠久,直接发现了Higgs Boson和重力波。现在,随着高光度LHC的升级和增强的高级LIGO“ Plus”,物理学家正在争夺建立Higgs工厂和第三代重力波干涉仪,以全面利用这些层状发现。对前者的计划一直是欧洲战略更新的讨论中心,即将得出结论,而正如我们在P53上报告的,欧洲的两个地点正在竞标主持爱因斯坦望远镜(ET)。干涉仪可能比对船员便宜,但是,正如前LIGO总监Barry Barish在我们对P61的采访中所解释的那样,像ET这样的项目需要专业管理,艰难的决策和健康的风险需求。
搜索使用140 fb - 1在√𝑠= 13 = 13 TEV的proton-Proton碰撞中,搜索在辐射量激量激量仪中腐烂的中性长颗粒(LLP)。分析由三个通道组成。第一个目标配对生产的LLP,其中至少一个LLP的产生具有足够低的增强,以至于其衰减产物可以作为单独的喷气机解析。第二和第三通道的目标LLP分别与衰减衰变的𝑊或𝑍玻色子相关。在每个通道中,不同的搜索区域针对不同的运动学制度,以涵盖广泛的LLP质量假设和模型。没有观察到相对于背景预测的事件过多。higgs玻色子分支分支到成对的一对大于1%的强烈衰减中性LLP,在95%的置信度下排除在95%的置信度下,适当的衰减长度在30 cm至4.5 m的适当范围内,这取决于LLP质量,这取决于LLP质量,这是先前搜索的Hadronic Caloremeter搜索量的三个因素。与横截面高于0.1 pb的𝑍玻色子相关的长寿命深光子的产生被排除在20 cm至50 m的范围内的深色光子平均衰减长度,从而通过数量级提高了先前的Atlas结果。最后,Atlas首次对长期的光轴轴向粒子模型进行了探测,生产横截面高于0.1 Pb,在0.1 mm至10 m范围内排除了0.1 Pb。
纠缠是量子力学的一个关键特征 1–3 ,在计量学、密码学、量子信息和量子计算 4–8 等领域有应用。纠缠已在从微观 9–13 到宏观 14–16 的各种系统和长度尺度中被观察到。然而,在可访问的最高能量尺度上,纠缠仍然基本上未被探索。这里,我们报告了在大型强子对撞机产生的顶-反顶夸克事件中对纠缠的最高能量观测,使用由 ATLAS 实验记录的质子-质子碰撞数据集,其质心能量为 √ s = 13 TeV,积分光度为 140 倒数飞靶 (fb) −1。自旋纠缠是通过测量单个可观测量 D 检测到的,D 是由带电轻子在其母顶夸克和反顶夸克静止框架中的夹角推断出来的。可观测量是在顶夸克-反顶夸克产生阈值附近的一个狭窄区间内测量的,在此区间内纠缠检测预计会很显著。它是在一个用稳定粒子定义的基准相空间中报告的,以尽量减少因蒙特卡洛事件生成器和部分子簇射模型在模拟顶夸克对产生方面的局限性而产生的不确定性。当 m 340 GeV < < 380 GeV tt 时,纠缠标记测得为 D = −0.537 ± 0.002(统计)± 0.019(系统)。观测结果与没有纠缠的情况相差超过 5 个标准差,因此这是首次观察到夸克对中的纠缠,也是迄今为止最高能量的纠缠观测。
在这项研究中,使用了JETNET [21]数据集。每个数据集都包含Pythia [22]的射流,其能量约为1 TEV,每个射流包含多达30或150个成分(此处:30)。数据集在喷气发射的parton中。在这里,研究了顶级夸克,轻夸克和Gluon发射的喷气机的数据集[23,24]。每个数据集包含约170k个单独的喷气机分为110K / 10K / 50K用于培训 /测试 /验证,其中验证数据集用于我们的结果。射流成分,颗粒,用r = 0的圆锥半径聚类。8。这些颗粒被认为是无质量的,因此可以用它们的3-momenta或横向动量p t,伪t,伪质η和方位角角度描述。在JetNet数据集中,这些变量相对于喷气动量给出:ηrel Ibηi -ηi -η射流,ϕ rel i b ϕ i-(ϕ射流mod2π)和p rel t,i b p p t,i b p t,i / p t,i / p t,i / p t,jet,jet,i在喷气机中im ime im impoy im im ot a Jet中的粒子。计算这些相对数量的不变质量,例如,对于喷气质量,意味着m rel = m jet / p t,jet。Jetnet库[25]提供了本研究中使用的几个指标。此外,作者还提供了一个称为MPGAN [26]的基线模型。该数据集已在粒子物理社区中广受欢迎,作为基于PC的生成模型的基准[15-17,27-34]。
核物质的状态方程,即核子结合能、温度、密度以及同位旋不对称性之间的热力学关系,长期以来一直是核物理和天体物理领域的研究热点。了解核状态方程对于研究原子核的性质、中子星的结构、重离子碰撞(HIC)动力学以及中子星并合都至关重要。重离子碰撞提供了一种在地面实验室中生成高密度和同位旋不对称核物质的独特方法,但形成的致密核物质仅存在很短的时间,人们无法在实验中直接测量核状态方程。实际应用中,通常采用将现象学势作为输入的输运模型,通过与实验室测得的可观测量进行比较来推导核状态方程。超相对论量子分子动力学 (UrQMD) 模型已广泛应用于研究从费米能量 (40 MeV/核子) 到 CERN 大型强子对撞机能量 (TeV) 的 HIC。随着 UrQMD 模型的核平均场势项、碰撞项和团簇识别项的进一步改进,FOPI 合作组最近测量的轻带电粒子集体流和核停止数据可以重现。在本文中,我们重点介绍了我们最近使用 UrQMD 模型研究核 EOS 和核对称能的成果。讨论了从传输模型和 HIC 实验中提取核 EOS 的新机遇和挑战。
摘要:报告了在 2016–2018 年 CERN LHC 的 CMS 实验记录的质子-质子碰撞数据中寻找重共振和衰变成 e µ 、e τ 和 µτ 终态的量子黑洞,这些数据是在√ s = 13 TeV 时记录的,对应的积分光度为 138 fb − 1 。重建了 e µ 、e τ 和 µτ 不变质量谱,未发现超出标准模型的物理证据。对于轻子味违反信号,截面与分支分数乘积的上限设定为 95% 的置信水平。研究了三个基准信号:R 宇称违反超对称模型中的共振 τ 中微子产生、具有轻子味违反衰变的重 Z ′ 规范玻色子以及具有额外空间维度的模型中的非共振量子黑洞产生。共振 τ 中微子在 e µ 通道中质量不超过 4.2TeV,在 e τ 通道中质量不超过 3.7TeV,在 µτ 通道中质量不超过 3.6TeV 时被排除。具有轻子味破坏耦合的 AZ ′ 玻色子在 e µ 通道中质量不超过 5.0TeV,在 e τ 通道中质量不超过 4.3Te V,在 µτ 通道中质量不超过 4.1TeV 时被排除。基准模型中的量子黑洞在 e µ 通道中阈值质量不超过 5.6TeV,在 e τ 通道中阈值质量不超过 5.2Te V,在 µτ 通道中阈值质量不超过 5.0TeV 时被排除。此外,还提取了与模型无关的限制,以便与具有相同最终状态和类似事件选择要求的其他模型进行比较。这些搜索的结果为发生轻子味道破坏衰变的重粒子提供了对撞机实验中最严格的限制。
fi g u r e 1从植物中的全长cDNA克隆中拯救感染性玉米镶嵌病毒(MMV)。(a)PJL-MMV-WT,PTF-N&P和PJL-L-Lintron质粒的示意图。全长的MMV型质粒设计用于转录,以产生MMV抗原组RNA(AgRNA),并包含位于截短的CAMV Double 35S启动子(2×35s)和肝炎乙肝(RZ)rzl89 bjl89 bilary prinary prinary pharine pharione phinary phinary phinary phincy sequence之间的全长MMV cDNA。请注意,序列以抗原(mRNA)感显示。在PTF二进制质粒中的2×35s和35s终结序列之间插入了N和P的全长cDNA。L的全长cDNA与植物内含子ST-LS1插入2×35s和35S终结序列之间的植物内含子cDNA,在PJL89二元质粒中。(b)用含有PJL-MMV-GFP,PTF-N&P和PJL-L-INTRON质粒的农杆菌菌株的农杆菌菌株的示意图,并说明了PJL-MMV-GFP质粒构建。全长PJL-MMV-GFP包含重复的N/P基因连接,将MMV抗原组cDNA的N和P基因之间的GFP基因两侧。le,领导者; TR,拖车; Ter,终结者; TEV,烟草蚀刻病毒; LB,左边界序列; RB,右边界序列。(c)通过烟草本尼亚娜(Nicotiana Benthamiana)的MMV救援程序的例证,并转移到玉米和Peregrinus Maidis Planthoppers。dpi,接种后天。图1C:使用biore nder.com
本论文包含我对 LHC 上 ATLAS 实验中质子-质子碰撞物理研究工作的两个不同方面。第一部分侧重于理解和开发校准系统,以便在过渡辐射跟踪器中获得最佳带电粒子重建。本论文中解释的方法是 TRT 中当前使用的校准技术,它适用于 ATLAS 收集的所有数据。由于开发的方法,实现了探测器设计分辨率,甚至在 TRT 的中心区域得到了改进。在第二部分中,介绍了三种不同的分析。由于我对跟踪的兴趣以及 LHC 上可用的新能量范围,第一个分析是研究 900 GeV 和 7 TeV 的多粒子相关性。这项分析是使用 2010 年收集的第一批 ATLAS 数据进行的。研究了两个不同的方面:高阶矩和尝试测量 η 箱中的归一化阶乘矩。本论文中描述的另外两个数据分析侧重于发现超出标准模型的物理学。同号顶夸克和 b 型第四代夸克的搜索就是其中之一。对于这项分析,详细研究了使用错误电荷测量重建轻子的概率。开发了新的数据驱动方法,其中似然技术表现出色,并被 ATLAS 中的其他分析所采用。这项搜索表明数据与标准模型预期一致。最后的分析是寻找最终状态中有两个轻子且横向能量缺失较大的超对称性。详细描述了双玻色子的产生,这是本次分析的主要背景之一。最终测量结果与标准模型预期相比没有超出。
本论文包含我对 LHC 上 ATLAS 实验中质子-质子碰撞物理研究工作的两个不同方面。第一部分侧重于理解和开发校准系统,以便在过渡辐射跟踪器中获得最佳带电粒子重建。本论文中解释的方法是 TRT 中当前使用的校准技术,它适用于 ATLAS 收集的所有数据。由于开发的方法,实现了探测器设计分辨率,甚至在 TRT 的中心区域得到了改进。在第二部分中,介绍了三种不同的分析。由于我对跟踪的兴趣以及 LHC 上可用的新能量范围,第一个分析是研究 900 GeV 和 7 TeV 的多粒子相关性。这项分析是使用 2010 年收集的第一批 ATLAS 数据进行的。研究了两个不同的方面:高阶矩和尝试测量 η 箱中的归一化阶乘矩。本论文中描述的另外两个数据分析侧重于发现超出标准模型的物理学。同号顶夸克和 b 型第四代夸克的搜索就是其中之一。对于这项分析,详细研究了使用错误电荷测量重建轻子的概率。开发了新的数据驱动方法,其中似然技术表现出色,并被 ATLAS 中的其他分析所采用。这项搜索表明数据与标准模型预期一致。最后的分析是寻找最终状态中有两个轻子且横向能量缺失较大的超对称性。详细描述了双玻色子的产生,这是本次分析的主要背景之一。最终测量结果显示,相对于标准模型的预期,没有超出。