图 3. 示意图说明了使用基于溶液的工艺通过有机硅弹性体冲压法(左下 - 无相分离的双连续)制造柔性 IL-GPE 薄膜,与旋涂法(右下 - 宏观相分离)相比。左上:DGEBA 环氧树脂、甲基四氢邻苯二甲酸酐 (MeTHPA) 固化剂、N-苄基二甲胺 (BDMA) 催化剂、G4(或四乙二醇二甲醚 (TEGDME))增塑剂、[EMIM][TFSI] 离子液体和 LiTFSI 盐的化学结构。该图经参考文献 [14] 许可转载。版权所有 2020 美国化学学会。
图3。示意图通过硅胶弹性体压印方法(与自旋涂层方法相比(右下 - 右下 - 右镜相距)相比,使用基于溶液的弹性体压印方法(左下 - 双连接)使用基于溶液的工艺制造了柔性IL-GPE膜。左上:DGEBA环氧树脂的化学结构,甲基四氢赤铁甲基酸酐(MECHPA)固化剂,N-苯并二甲基 - 胺(BDMA)催化剂,G4(或四甲基乙二醇乙二醇乙二醇二甲基乙二醇二甲基乙醚(TEGDME)和LITFSI imi imi imi imi imi imi imi imi, 盐。在参考文献[14]的许可下重印该图。版权2020美国化学学会。
全稳态锂离子电池(LIB)吸引了潜在安全的存储系统。1-7此外,近年来,已经对3D打印技术进行了调整以使Libs的制造,从而允许方便地生产柔性设计,例如微型3D形状。原则上,使用简单的打印系统可以将这种微电池直接集成到包含各种电子设备的基板上。最近,已经提供了用于Lib的阴极和阳极的3D可打印墨水。8-13在此工作,Lewis等。 意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。 8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8-13在此工作,Lewis等。意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8 Kohlmeyer等。开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成14-18 Cheng等。使用高温直接ink写作技术开发了3D打印的混合固态电解质。15电解质墨水由溶解在n-丙基-N-甲基吡咯烷
图1:我们的模拟研究中涉及的离子,溶剂分子和TBT单体的插图。面板(a)和(b)分别描绘了有机溶剂分子1,3-二氧烷(DOL)和1,2-二甲基乙烷(DME)。面板(c)显示锂离子(li +),而面板(d)则显示BIS(三氟甲烷)磺胺酰亚胺(TFSI-)。面板(E)说明了4(噻吩-3-基)有益的阳离子 - π相互作用态,当苯环为z = 0平面时,带有锂的乙二醇(TBT),带有锂离子li +,而平面噻吩环则是硫烯环使角度呈角度,θ= 34。31◦使用Z = 0平面。TBT和Li +离子的苯环之间的最小距离为z min = 1。84˚A。面板(F)说明当将噻吩环放置在Z = 0平面时,相同TBT分子的阳离子-π相互作用状态,苯环的平面使角度θ= 34。31◦使用Z = 0平面。在这种配置中,噻吩环和li +离子之间的最小距离为z m in = 2。0°A。
图2。表征ICOF/PIL复合材料。A,TPPA-SO-SO 3 LI,TPPA-SO 3 LI/P(BVIM-TFSI)复合材料,DMTHA-SI-LI和DMTHA-SI-LI/P(BVIM-TFSI)复合材料的粉末X射线衍射(PXRD)图案。b,用于TPPA-SO 3 li和dmtha-si-li Icofs在77 K下测得的氮气吸附等温线。c,P(BVIM-TFSI),TPPA-SO 3 LI,DMTHA-SI-LI,TPPA-SO 3 LI/P(BVIM-TFSI)复合材料的热重分析曲线和DMTHA-SI-LI/P(BVIM-TFSI)。d,复合材料的摄影图像。插图是具有横截面视图的数字图像。e – f,TPPA-SO-SO 3 LI/P(BVIM-TFSI)复合材料的扫描电子显微镜(SEM)图像和DMTHA-SI-LI/P(BVIM-TFSI)复合材料。g,TPPA-SO 3 li/p(BVIM-TFSI)和DMTHA-SI-LI/P(BVIM-TFSI)复合材料的点火测试的照相图像。h,TPPA-SO-SO 3 LI/P(BVIM-TFSI)和DMTHA-SI-LI/P(BVIM-TFSI)复合材料的傅立叶转换红外(FT-IR)光谱。
副教授教授TUĞBA ARİFİOĞLU 个人信息 办公室电话:+90 312 297 6297 传真电话:+90 312 299 2163 其他电子邮件:ttugsuz@hacettepe.edu.tr 网站:http://yunus.hacettepe.edu.tr/~ttugsuz/ 国际研究人员 ID ORCID:0000-0002-1407-1374 ScopusID:8658356100 Yoksis 研究人员 ID:117169 外语英语,C1 高级论文博士,重金属在含染料沸石上吸附的理论研究,哈塞特佩大学,理学院,化学系,2007 研究生,玻璃结构和水性吡啶-2,6-二羧酸配合物中铽发光的实验和理论研究,哈塞特佩大学,理学院学院,化学系,2001 研究领域 化学,自然科学 学术头衔/任务 副教授,哈塞特佩大学,理学院,化学系,2017 年至今 研究助理,哈塞特佩大学,理学院,化学系,1999 年至今 发表的期刊论文被 SCI、SSCI 和 AHCI 检索 I. 通过实验和 TD-DFT 方法对发光铽 (III) 和吡啶 2,6 二羧酸配合物的研究 Tugsuz T.、YÜKSEL D.、GÖKOĞLU E.、Ateş S. 荧光杂志,第 33 卷,第 3 期,第 1057-1065 页,2023 年(SCI-Expanded)II。利用石英晶体微天平实时感应 Cu(II) 离子的分子设计离子印迹纳米粒子 Aydoğan N.、Aylaz G.、YÜCEL M.、ARİFİOĞLU T.、ANDAÇ AM Biomimetics,第 7 卷,第 4 期,2022 (SCI-Expanded) III。含 TFSI 的琥珀色发光电化学电池的结构-性能关系