对电力的需求增加和化石能源的不可再生性质,使得朝着可再生能源迈进。然而,可再生能源的常见问题(即间歇性)是通过互补来源的杂交克服的。因此,每当主要来源未完全覆盖负载需求时,第二个绝对会支持它。此外,必须由网格连接的混合可再生能源系统来管理生产,与网格和存储系统的相互作用,这是本文的主要目的。的确,我们提出了一个新系统的网格连接的PV玻璃,该系统可以通过最佳管理算法来管理其能量流。我们提出的混合体系结构中的DC总线源连接拓扑解决了负载供电时源之间的同步问题。我们在这项工作中考虑,选择电池放电和电荷限制功率可扩展电池寿命。另一方面,我们根据其数学建模模拟了体系结构各个组件的动态行为。之后,提出了一种能量管理算法,并使用MATLAB/SIMULINK模拟以服务负载。结果表明,考虑到居民的电气行为以及典型的一天的天气变化,在所有情况下都付了负载。的确,通过日出和日落之间的即时太阳生产或从日落到晚上10点的恢复,可以为载荷提供负载,这可以是存储或注入的能量,而无需超过每小时1000W的能量。c⃝2019由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
1 引言 量子最优控制理论 (QOCT) 是指一套设计和实现外部电磁场形状的方法,这些电磁场以最佳方式操纵原子或分子尺度上的量子动力学过程 [246]。它建立在更通用的控制理论的基础上,控制理论是在应用数学、工程学和物理学交叉领域发展起来的,涉及操纵动态过程以实现特定任务。主要目标是使所研究的动态系统以最优方式运行并达到其物理极限,同时满足现有设备施加的约束。量子过程也不例外,但控制理论的某些方面必须进行调整,以考虑到量子世界的特殊性。过去几年中,QOCT 已成为新兴量子技术不可或缺的一部分 [6],证明了控制将科学知识转化为技术 [246]:如果叠加原理是量子力学的核心特征,那么量子控制就是叠加原理在起作用。量子技术需要相对隔离良好、特性良好的量子系统。与化学反应动力学等使用 QOCT 的其他领域相比,这一特性使其成为 QOCT 的理想试验台。另一方面,QOCT 已经成熟到如今已可在实验中使用。QOCT 的下一个挑战是成为一种
摘要:在当今竞争激烈的商业环境中,组织越来越需要对灵活且经济高效的业务流程进行建模和部署。在这种情况下,可配置流程模型用于通过以通用方式表示流程变体来提供灵活性。因此,类似变体的行为被分组到包含可配置元素的单个模型中。然后根据特定需求定制和配置这些元素。但是,配置元素的决策可能不正确,从而导致严重的行为错误。最近,流程配置已扩展到包括云资源分配,以通过允许访问按需 IT 资源来满足业务可扩展性的需求。在这项工作中,我们提出了一个基于命题可满足性公式的形式化模型,允许找到正确的元素配置,包括资源分配配置。此外,我们建议根据云资源成本选择最佳配置。这种方法可以为设计人员提供正确且经济高效的配置决策。
在生物学中,构建具有特定形状的 DNA 复合物是令人感兴趣的。这些复合物可以通过图论来表示,使用边来模拟在连接处连接的 DNA 链,用顶点表示。由于引导构建效率低下,因此需要 DNA 自组装的设计策略。在柔性瓦片模型中,分支 DNA 分子被称为瓦片,每个瓦片由柔性未配对的粘性末端组成,能够形成键边。因此,我们考虑构建图 G(即目标结构)所需的最小瓦片和键边类型数量,而不允许形成较低阶的图或非同构的等阶图。我们强调(不可)交换图的概念,为不可交换图建立下限。我们还介绍了一种通过顶点覆盖建立上限的方法。我们应用这两种方法来证明 rook 图和 Kneser 图的新界限。
进入21世纪以来,我国发展迅速,电动汽车作为汽油车的替代逐渐进入大众视野。目前,电动汽车换电问题正成为制约其发展的主要因素,新能源的合理开发与研究成为当务之急。微电网成为符合要求的合理产品。然而微电网系统并非十全十美,如今的换电站集充放电储能功能于一体,与微电网互动形成能量交换。然而,如今的微电网系统面临能源供需关系紧张、负荷不稳定等问题。如何协调微电网与电动汽车换电站两个运营主体的良好互动,保证各自的利益,最终实现节能减排、利于社会发展的目标具有很强的现实意义。
虽然许多研究已经强调了 100% 可再生电力系统的可行性(Brown 等人,2018 年,以及其中的参考文献),但这种系统的成本仍存在很大争议。继 Joskow(2011 年)、Hirth(2015 年)和 Hirth 等人(2016 年)之后,许多文章都关注可再生能源在电力结构中的最佳比例。这些文献强调了与部署可变可再生能源相关的系统整合成本的存在。特别是,强调了一种“自我蚕食”现象,与特定位置的所有太阳能电池板或风力涡轮机同时发电有关。在缺乏经济实惠的存储的情况下,这些整合成本有两个后果:(i)部署可再生能源会导致大量额外成本,并且随着部署率的提高而迅速增加;(ii)必须在不同的生产技术之间取得适当的平衡,以尽量减少这种额外成本。
∗ 我感谢 Daniel Carrol、Wouter den Haan、Brigitte Hochmuth、Roozbeh Hosseini、Monika Merz、Xavier Ragot 和三位审稿人对本文早期版本的详细评论。我还从 SED 会议、ASSA 会议、牛津-纽约联邦储备银行货币经济学会议、康斯坦茨货币理论与政策研讨会、维也纳宏观研讨会、T2M 年会、马拉喀什宏观周的与会者以及来自不同地方的研讨会参与者那里得到了有益的反馈。我感谢法国国家研究机构 (Labex Ecodec/ANR- 11-LABX-0047) 的资金支持。我没有与本文所述研究相关的物质或经济利益。† 巴黎综合理工学院和 CREST;地址:5 av. Le Chatelier, 91120 Palaiseau, France;电子邮件:edouard.challe@gmail.com。 ‡ 第一稿:2017 年 2 月。
Xianyi Yang,Adam Abdin,Jakob Puchinger。 对共享的自动驾驶电动汽车和电网的最佳管理:可再生能源整合的潜力。 运输研究。 C部分,新兴技术,2024,165,pp.104726。 10.1016/j.trc.2024.104726。 hal-04618301Xianyi Yang,Adam Abdin,Jakob Puchinger。对共享的自动驾驶电动汽车和电网的最佳管理:可再生能源整合的潜力。运输研究。C部分,新兴技术,2024,165,pp.104726。10.1016/j.trc.2024.104726。hal-04618301
摘要:金属 - 有机框架(MOF)UIO-66(OSLO-66大学)的超矩形4至6 nm纳米颗粒成功地制备并嵌入到聚合物Pebax 1657中,以制造薄膜纳米纳米含量(TFN)的薄膜(TFN)MEMBRANES,用于CO 2 /N 2 /CO 2 /CO 2 /CH 4分隔。此外,已经证明了使用氨基(-NH 2)和硝基( - 2号)组的配体功能化显着增强了膜的气体分离性能。对于CO 2 /N 2分离,7.5 wt%UIO-66-NH 2纳米颗粒的CO 2渗透率比原始膜(从181到277 GPU)提高了53%。关于CO 2 /N 2的选择性,用5 wt%UIO-66-NO 2纳米颗粒制备的膜在没有MOF的情况下以17%的增量增量(从43.5到51.0)。但是,该膜的CO 2渗透率降至155 GPU。在5 wt%UIO-66-NO 2膜中添加10 wt%ZIF-94颗粒,平均粒径约为45 nm,允许将CO 2固定膜增加到192 GPU,同时保持CA的CO 2 /N 2选择性。51由于MOF与ZIF-94的亲水性性质提供的聚合物基质之间的协同相互作用引起的。在CO 2 /CH 4分离的情况下,7.5 wt%UIO-66-NH 2膜表现出最佳性能,CO 2 Pereance从201增加到245 GPU。关键字:金属 - 有机框架(MOF),Ultrasmall MOF,UIO-66,薄膜纳米复合材料(TFN)膜,气体分离
非线性极化器使得可以测量多光子过程的极化特性,并表征材料的非线性特性。但是,现有的测量策略不是最佳的,并且精确度差。在这封信中,我们开发了一个适用于非线性Stokes-Mueller Polarimetry(SMP)的严格优化模型,以提高两种和第三个光子过程的非线性Mueller矩阵(MM)的估计精度。基于模型,我们设计的测量策略将第二次谐波发电机偏振仪的MM系数估计差异降低约58.2%,而第三谐波式极化仪的估计差异降低了78.7%。优化模型为提高非线性光学的SMP的测量精度打开了一扇门,并且可以很容易地应用于任何基于多光子的非线性偏光仪。©2024 Opti-