5. 生命周期概述 ................................................................................................................5-1 5.1 纳米 TiO 2 的生产 ..............................................................................................5-3 5.1.1 生产用于防晒霜的纳米 TiO 2 ........................................................5-10 5.1.2 生产用于其他紫外线稳定剂的纳米 TiO 2 ........................................................5-11 5.1.3 生产用于光催化剂的纳米 TiO 2 .............................................................5-11 5.2 纳米 TiO 2 的加工 .............................................................................................5-11 5.2.1 生产用于防晒霜的纳米 TiO 2 .............................................................5-12 5.2.2 生产用于其他紫外线稳定剂的纳米 TiO 2 .............................................................5-12 5.2.3 生产用于光催化剂的纳米 TiO 2 .............................................................5-13 5.3 纳米 TiO 2 的使用................................................................................................5-13 5.3.1 纳米 TiO 2 在防晒霜中的应用...............................................................5-13 5.3.2 纳米 TiO 2 作为其他紫外线稳定剂的应用................................................5-14 5.3.3 纳米 TiO 2 作为光催化剂的应用.............................................................5-14 5.4 寿命终止.............................................................................................................5-15 5.4.1 防晒霜的寿命终止....................................................................................5-15 5.4.2 其他紫外线稳定剂的寿命终止....................................................................5-16 5.4.3 光催化剂的寿命终止....................................................................................5-16
在使用钛合金粉末时,在定向能量沉积(DED)添加剂制造,粉末聚集和烧结时可能会发生在熔体池之外。使用原位同步子射线照相术,我们研究了池周围发生Ti6242粉末的烧结的机制,进行了一项参数研究,以确定激光功率和阶段遍历速度对烧结速度的影响。结果表明,尽管后者也降低了沉积层的厚度,但可以使用高激光功率或增加阶段横向速度来减少有害的烧结。DED期间烧结的机理被确定为激光束中粉末颗粒的飞行加热。在本研究中探索的加工条件下颗粒加热的计算证实,粉末颗粒可以合理地超过700℃,即Ti表面氧化物溶解的阈值,因此如果未掺入熔体池,则粉末容易烧结。沉积表面上烧结粉末层的堆积导致缺乏融合孔。为了减轻烧结的形成及其对DED组件质量的有害影响,至关重要的是,粉末输送点面积小于熔体池,以确保大多数粉末土地在熔体池中。
摘要:本研究的目的是在钛 (Ti) 植入物表面形成功能层,以增强其生物活性。使用经济高效的浸涂法,在碱处理的 Ti 表面上沉积了含有羟基磷灰石 (HAp) 纳米颗粒 (NPs) 和镁 (Mg) 颗粒的聚氨酯 (PU) 层。从形态、化学成分、粘附强度、界面结合和热性能等方面评估涂层。此外,使用 MC3T3-E1 成骨细胞样细胞研究了细胞对不同涂层 Ti 基材的反应,包括通过碱性磷酸酶 (ALP) 测定评估细胞粘附、细胞增殖和成骨活性。结果表明,HAp NPs 的加入增强了涂层和碱处理的 Ti 表面之间的界面结合。此外,Mg 和 HAp 颗粒的存在增强了表面电荷特性以及细胞附着、增殖和分化。我们的结果表明,在钛植入物上沉积含有 Mg 和 HAp 颗粒的生物活性复合层可能会诱导骨形成。
2 SLM 10 2.1参考书目报告制造的钛合金Ti6Al4v的各向异性的机械表征。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.2添加剂制造过程的介绍。。。12 2.1.3钛合金TI6AL4V的微结构和纹理由增材制造制造。。。。。。。。。。15 2.1.4 SLM生产的钛al-Loy Ti6al4v的机械性能的各向异性。。。。。。。。。。。。。18 2.1.5结论。。。。。。。。。。。。。。。。。。。。。。。。。。。22 2.2实验研究。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.2.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.2.2样品的描述。。。。。。。。。。。。。。。。。。24 24 2.2.3单轴拉伸测试。。。。。。。。。。。。。。。。。。。。。27 27 2.2.4剪切测试。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.3结果和讨论。。。。。。。。。。。。。。。。。。。。。。。。37 2.3.1单轴拉伸测试。。。。。。。。。。。。。。。。。。。。。37 2.3.2剪切测试。。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.4结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45
摘要。氮化钛的应用涵盖了微电子、生物医药等不同行业。本文介绍了不同沉积条件下氮化钛薄膜的结构和光学特性分析。样品采用直流磁控溅射沉积在硅基片上。沉积在室温下进行,在预热至 300°C 的基片上进行,在分别以 -40 V 和 -90 V 极化的基片上进行。结果表明,当沉积在室温下进行时,结构取向与沉积过程存在依赖性。当沉积在预热的基片上进行时,没有结构取向。基片的负极化导致小尺寸晶体的形成。至于光学特性,薄膜表现出良好的半导体特性和低反射率。
在高温下表现出结构稳定性的难治性金属纳米结构引起了人们对新兴应用的巨大兴趣,例如热质量,热伏耐托(TPV),太阳能热,热电,热电,,太阳能电气,太阳能型生成应用。[1-19]然而,尽管散装金属的熔点熔点高得多,但这些金属制成的纳米结构在高温下比其散装柜台更容易受到形态变化的影响。这主要是由于较大的表面量比导致纳米结构的表面能增加[20],从而驱动了与环境气体和质量扩散的氧化还原反应,从而导致结构衰减。这些纳米结构的固有的热实例阻碍了其在高于1200°C的温度下的靶向应用[21–25]此外,高温等离子/光子应用所需的材料是高度挑战性的。在高温下,光谱选择性和结构稳定性的结合仅在一小部分可用的材料选择中。
日期 : 2020 年 8 月 18 日 作者 : Prakruth Harish 审查员 : Esmaeil Sadeghi、Cross Joseph、GKN Aerospace 和 Magnus Neiker、West 项目 : 制造业 主要领域 : 机械工程 瑞典语标题 Förstå Effekten av Isotermimmimimbehandlinegar på lmd-w byggt t-6242 学分: 120 高等教育学分 关键词 有 6242 出版商 : 西部大学工程科学系,S-461 86 尾随,瑞典 电话:+ 46 520 22 30 00 传真:+ 46 520 22 99 网站:www.hv.se
摘要。氮化钛的应用涵盖了微电子、生物医药等不同行业。本文介绍了不同沉积条件下氮化钛薄膜的结构和光学特性分析。样品采用直流磁控溅射沉积在硅基片上。沉积在室温下进行,在预热至 300°C 的基片上进行,在分别以 -40 V 和 -90 V 极化的基片上进行。结果表明,当沉积在室温下进行时,结构取向与沉积过程存在依赖性。当沉积在预热的基片上进行时,没有结构取向。基片的负极化导致小尺寸晶体的形成。至于光学特性,薄膜表现出良好的半导体特性和低反射率。
摘要:同轴丝材激光金属沉积是一种多功能、高效的增材工艺,可在复杂结构的制造中实现高沉积速率。本文研究了三光束同轴丝材系统,特别关注了沉积高度和激光散焦对所得珠子几何形状的影响。随着沉积间隔距离的变化,工件照明比例也会发生变化,该比例描述了直接进入原料丝材和基材的能量比。在不同的散焦水平和沉积速率下沉积单个钛珠,并测量和分析珠子的纵横比。在实验设置中,发现散焦水平和沉积速率对所得珠子的纵横比有显著影响。随着离光束会聚平面的散焦水平增加,光斑尺寸增加,沉积轨道更宽更平。工艺参数可用于将沉积材料调整到所需的纵横比。在同轴丝材沉积中,散焦为丝材和基材之间的热量分布提供了一种调节机制,对所得沉积物有重要影响。
摘要。钛铝化物 (TiAl) 合金是一种金属间化合物,与镍基高温合金相比,它具有低密度、高熔点、良好的抗氧化和耐腐蚀性。因此,这些合金用于航空发动机部件,如涡轮叶片、燃油喷射器、径向扩散器、发散襟翼等。在运行过程中,航空发动机部件在氧化和腐蚀环境中承受高热负荷,导致磨损和其他材料损坏。由于交货时间长且费用高昂,更换整个部件可能并不可取。在这种情况下,维修和翻新可能是回收 TiAl 部件的最佳选择。不幸的是,目前还没有针对 TiAl 基部件的认可修复技术。基于增材制造 (AM) 的定向能量沉积 (DED) 可以作为帮助修复和恢复昂贵航空发动机部件的一种选择。在本文中,回顾了利用 DED 技术局部修复受损的 TiAl 基航空部件的努力。更换整个 TiAl 部件是不可取的,因为这样做成本昂贵。DED 是一种很有前途的技术,用于生产、修复、返工和大修 (MRO) 受损部件。考虑到航空工业的高质量标准,对 DED 修复的 TiAl 部件进行认证以供未来在飞机上使用非常重要。然而,目前尚无关于 TiAl 修复部件认证的标准。案例研究表明,人们正在考虑使用 DED 修复 TiAl 部件。在一台机器上完成加工、修复和精加工功能的混合技术是一种提高修复效率的有吸引力的实施策略。审查表明,对基于 DED 的修复技术的开发和应用的研究有限,这表明非常需要进一步研究。