摘要:过渡金属二核苷(TMDS)吸引了广泛的各种设备应用的研究兴趣。原子层沉积(ALD)是一种CMOS兼容技术,可以使8至12英寸的高质量TMD纤维制备。用于大规模电路集成的晶圆。但是,ALD增长机制仍然尚未完全理解。在这项工作中,我们系统地研究了WS 2的生长机制,并发现它们与成核密度和纤维厚度有关。透射电子显微镜成像揭示了不同生长阶段下侧向和垂直生长机制的共存和竞争,并且获得了每种机制的临界厚度。当膜厚度保持小于5.6 nm(8层)时,平面内侧生长模式主导,而当厚度大于20 nm时,垂直生长模式占主导地位。从对这些生长机制的最终理解中,膜沉积的条件得到了优化,最大晶粒尺寸为108 nm。WS 2-基于效应的晶体管分别用电子迁移率和/o效率比分别为3.21 cm 2 v -1 s -1和10 5。,这项工作证明了TMDFIFM在晶状体尺度上具有出色的厚度和形态可控性的能力,从而使除晶体管以外的许多潜在应用,例如基于纳米或纳米丝的超级电容器,电池,传感器和催化。关键字:过渡金属二盐元化,原子层沉积,晶圆尺度,ws 2,fie fief-ect-exect transistors■简介
如超越摩尔定律和物联网设备。[2] 在过去的二十年里,人们投入了大量的研究精力来开发大规模生产 2DM 的新方法和策略,旨在实现质量、高通量和低成本之间的最佳平衡。[3] 溶液处理是实现高浓度和高体积 2DM 分散体(也称为“墨水”)的最有效方案;其中,液相剥离是一种有效的策略,可以将块状层状材料转化为分散在合适溶剂中的薄纳米片。[4] 这些墨水可以采用多种方法打印成薄膜,包括喷墨打印、丝网印刷和喷涂,[5] 从而促进 2DM 印刷电子的发展,其中低成本和大面积制造与器件性能同样重要。在这方面,人们对(光)电子学中二维半导体的兴趣日益浓厚,这导致了过渡金属二硫化物(TMD)的巨大成功。它们极其多样的物理化学性质确保了广泛的适用性,并通过使用分子化学方法的特殊功能化策略进一步扩展了其适用性。[6–11] 尽管如此,进展仍然受到结构缺陷的阻碍,这对
具有有利的电化学特征的2D/2D异质结构(HTS)的生产具有挑战性,特别是对于半导体过渡金属二甲硅烷基(TMDS)而言。在这项工作中,我们引入了一项基于CO 2激光绘图仪的技术,用于实现包括氧化石墨烯(RGO)和2D-TMDS(MOS 2,WS 2,MOSE 2,MOSE 2和WSE 2)的HT膜。该策略依赖于激光诱导的异质结构(LIHTS)的产生,在辐照后,纳米材料在形态和化学结构中显示出变化,成为导电易于转移的纳米结构膜。LIHT在SEM,XPS,Raman和电化学上详细介绍了LIHT。激光处理诱导GOS转化为导电性高度去角质的RGO,并用均质分布的小型TMD/TM-氧化物纳米片装饰。所获得的独立式LIHT膜被用来在硝酸纤维素上构建独立的传感器,其中HT既可以用作传感器和传感表面。所提出的硝酸纤维素传感器制造过程是半自动化和可重现的,可以在相同的激光处理中生产多个HT膜,并且模具印刷可以定制设计。证明了不同分子(例如多巴胺(神经递质),儿茶素(黄酮醇)和过氧化氢)在电分析检测中的卓越性能,从而获得了生物学和农业样本中的纳米摩尔限制,并获得了高纤维抗性的纳摩尔限制。考虑到强大而快速的激光诱导的HT产生以及涂鸦所需模式的多功能性,提出的方法是通过可持续和可访问的策略开发电化学设备的破坏性技术。
我们利用从头算密度泛函理论 (DFT) 研究了 54 个选定原子单层中的挠曲电效应。具体来说,我们考虑了 III 族单硫属化物、过渡金属二硫属化物 (TMD)、IV 族、III-V 族、V 族单层、IV 族二硫属化物、IV 族单硫属化物、过渡金属三硫属化物 (TMT) 和 V 族硫属化物的代表性材料,执行对称性适应的 DFT 模拟,以计算在实际相关的弯曲曲率下沿主方向的横向挠曲电系数。我们发现这些材料表现出线性行为,沿两个主方向具有相似的系数,TMT 的值比石墨烯大五倍。此外,我们发现了挠曲电效应的电子起源,该效应随着单层厚度、弯曲方向的弹性模量和组成原子的极化率之和而增加。挠曲电性 1-8 是半导体/绝缘体共有的机电特性,代表应变梯度和极化之间的双向耦合。与压电性不同,它不限于非中心对称的材料,即不具有反演对称性的晶格结构,与电致伸缩相反,它允许通过反转电场来反转应变,并允许感测额外的
我们利用从头算密度泛函理论 (DFT) 研究了 54 个选定原子单层中的挠曲电效应。具体来说,我们考虑了 III 族单硫属化物、过渡金属二硫属化物 (TMD)、IV 族、III-V 族、V 族单层、IV 族二硫属化物、IV 族单硫属化物、过渡金属三硫属化物 (TMT) 和 V 族硫属化物的代表性材料,执行对称性适应的 DFT 模拟,以计算在实际相关的弯曲曲率下沿主方向的横向挠曲电系数。我们发现这些材料表现出线性行为,沿两个主方向具有相似的系数,TMT 的值比石墨烯大五倍。此外,我们发现了挠曲电效应的电子起源,该效应随着单层厚度、弯曲方向的弹性模量和组成原子的极化率之和而增加。挠曲电性 1-8 是半导体/绝缘体共有的机电特性,代表应变梯度和极化之间的双向耦合。与压电性不同,它不限于非中心对称的材料,即不具有反演对称性的晶格结构,与电致伸缩相反,它允许通过反转电场来反转应变,并允许感测额外的
材料科学领域只见证了极少数具有彻底改变我们世界的潜力的发现和技术进步,而二维 (2D) 材料的出现是其中的佼佼者。2004 年,石墨烯从石墨中分离出来,这种材料的特点是原子级薄度,主要受表面效应的影响,开辟了材料科学的新领域。二维材料的研究,包括石墨烯及其对应物,如硅烯、锗烯、磷烯,以及过渡金属二硫属化物 (TMD)、MXenes 和其他层状半导体,已经发展成为一项全球性的努力,涉及物理、化学、工程和生物等不同领域的数千名研究人员。二维材料的独特之处在于其层状结构,包括强的平面内化学键和层间弱的平面外耦合。这种结构排列允许单个原子层分裂,当材料厚度减小到单层或几层时,电子特性会发生非凡的变化。这种现象被称为量子限制,它赋予二维材料独特且往往出乎意料的特性,推动了对各个领域新应用和创新途径的探索。随着研究人员深入研究这些层状材料的复杂性,越来越明显的是,它们有望开启前所未有的可能性,为科学技术的突破性进步铺平道路。
颞下颌关节疾病(TMDS)与咀嚼肌密切相关,但是缺乏评估肌肉的客观和定量方法。Ideas-IQ是一种化学移位编码的磁共振成像(CSE-MRI),可以量化脂肪差异(FF)。这项研究的目的是开发一种基于MR理想的IQ方法,用于TMD患者的定量肌肉诊断。回顾性地包括了65例接受3次MRI扫描(包括CSE-MRI序列)的患者。MRI诊断和临床数据进行了审查。正常组有19例患者,TMD组有46例具有单侧椎间盘位移的患者。TMD组被细分为具有和没有紧握的那些。在CSE-MRI上,两位口服放射科医生两次测量了咬肌,内侧和外侧翼状肌肉的左右FF值,并使用了平均值。使用CSE-MRI的FF测量结果表现出极好的观察内和观察者间一致性(两者的ICC> 0.889)。在咬合体,内侧翼状和翼展中,右侧和左FF值之间没有统计学上的显着差异(p> 0.05)。在TMD组中发现了统计学上的显着差异,而没有夹紧,其中咬合肌肉在椎间盘位移侧的统计学上的FF值明显低于正常侧的FF值(3.94±1.61)(4.52±2.24)(p <0.05)。CSE-MRI可以重复量化肌肉FF值,预计将是TMD患者的客观肌肉评估的生物标志物。与其他咀嚼肌相比,咬肌有望特别有用,但需要进行研究。
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
在过去的十年中,拉曼光谱已被证明是一种强大的光谱方法,有助于了解纳米级复杂而迷人的能量传输世界。人们开发了各种基于拉曼的方法来测量二维材料和其他纳米级结构的热性能。光热拉曼法常用于确定原子级薄材料(如石墨烯和过渡金属二硫属化合物 (TMD))的界面热阻 (R ″ tc ) 和热导率 (k)。[1–4] 该技术同时使用激光加热样品和拉曼信号表征。温度相关的拉曼信号和 3D 热传导模型用于提取热性能测量值。通过焦耳加热的拉曼测温法同样可以探测界面能量传输和热导率;通过用激光加热代替电流加热源,可以使用物理建模和温度相关的拉曼信号来确定 R ″ tc 。 [5,6] 最近,人们设计了另一种综合光热拉曼方法,使用连续波和脉冲激光来测量二维材料的热性能。[7] 该方法通过比较一系列激光光斑尺寸和脉冲持续时间的不同拉曼温度响应来测量单层和多层石墨烯的 k。此外,双激光拉曼测温法和双波长闪光拉曼映射法分别用于测量二维材料和纳米线的热导率。[8,9]
利用第一性原理计算,我们研究了六种过渡金属氮化物卤化物 (TMNH):HfNBr、HfNCl、TiNBr、TiNCl、ZrNBr 和 ZrNCl 作为过渡金属二硫属化物 (TMD) 沟道晶体管的潜在范德华 (vdW) 电介质。我们计算了剥离能量和体声子能量,发现这六种 TMNH 是可剥离的并且具有热力学稳定性。我们计算了单层和体 TMNH 在平面内和平面外方向的光学和静态介电常数。在单层中,平面外静态介电常数范围为 5.04 (ZrNCl) 至 6.03 (ZrNBr),而平面内介电常数范围为 13.18 (HfNBr) 至 74.52 (TiNCl)。我们表明,TMNH 的带隙范围从 1.53 eV(TiNBr)到 3.36 eV(HfNCl),而亲和力范围从 4.01 eV(HfNBr)到 5.60 eV(TiNCl)。最后,我们估算了具有六个 TMNH 单层电介质和五个单层通道 TMD(MoS 2 、MoSe 2 、MoTe 2 、WS 2 和 WSe 2 )的晶体管的电介质漏电流密度。对于 p- MOS TMD 通道晶体管,30 种组合中有 25 种的漏电流小于六方氮化硼 (hBN),一种众所周知的 vdW 电介质。对于以 HfNCl 为栅极电介质的 ap -MOS MoSe 2 晶体管,预测最小双层漏电流为 1.15×10 -2 A/cm 2。据预测,HfNBr、ZrNBr 和 ZrNCl 也会在某些 p-MOS TMD 晶体管中产生微小的漏电流。