最近在二维材料中发现的量子发射器为量子信息集成光子器件开辟了新的前景。这些应用中的大多数都要求发射的光子是不可区分的,而这在二维材料中仍然难以实现。在这里,我们研究了利用电子束在六方氮化硼中产生的量子发射器的双光子干涉。我们在非共振激发下测量了 Hong-Ou-Mandel 干涉仪中零声子线光子的相关性。我们发现发射的光子在 3 纳秒的时间窗口内表现出 0.44 ± 0.11 的部分不可区分性,这对应于考虑不完美发射器纯度后的校正值 0.56 ± 0.11。 Hong-Ou-Mandel 可见度与后选择时间窗口宽度的相关性使我们能够估计发射器的失相时间约为 1.5 纳秒,约为自发辐射设定的极限的一半。使用 Purcell 效应和当前的 2D 材料光子学,可见度可达到 90% 以上。
一名 64 岁男性,曾因前列腺癌、高血压和胃溃疡接受治疗。他正在服用氨氯地平、奥美沙坦、阿替洛尔、他达拉非、萘哌地尔、埃索美拉唑和 Miya-BM®(丁酸梭菌 MIYAIRI 588 菌株;日本东京宫崎县制药有限公司)。他没有吸烟史,偶尔饮酒。就诊前四天,他出现恶心和食欲不振。由于症状持续,他去了附近的诊所,医生开了止吐药。他的症状没有改善,他变得头晕目眩,无法移动,于是他叫了救护车。就诊时生命体征显示患者昏睡,但意识清醒,格拉斯哥昏迷量表评分为 15,血压为 141/100 mmHg,呼吸 29 次/分钟,脉搏 111 次/分钟,外周血氧饱和度 (SpO 2 ) 为 98%。检查期间,患者出现全身强直性抽搐。抽搐立即
使用自然语言动作空间的强化学习通常由于自然语言的组合而遭受维度的诅咒。先前的研究利用了预验证的语言模型来限制动作语义并减少动作空间的大小。然而,由于经过验证的模型通常是在一般的竞争中训练的,因此在预审计的模型中编码的先验和特定RL环境的特征之间可能存在不匹配的不匹配。为了解决这个问题,我们提出了相互信息的正规政策选择,MIPO。MIPO可以使动作空间的隐式和动态减少。从审计的语言模型提供的先验开始,我们的方法基于相互信息正常化的指导在学习过程中动态调整了先验。从理论上讲,我们证明了这种政策优化过程会导致相互信息正规化RL目标的单位改进。从经验上讲,我们在各种环境中进行了实验,并证明了MIPO的有效性。
芯片效果非线性功能有助于升级Photonic集成电路的实用程序和性能,尤其是对于广泛的经典和量子应用,例如可调的相干辐射,诸如光学频率转换,光谱,光谱,量子科学等。在这里,我们在具有高质量(Q〜10 6)因子的绝缘子(LTOI)微型风险上制造了Z -Cut锂锂。。分析了严格的模式相匹配条件和整个三波混合过程的第二个谐波效率。我们的工作表明,具有较高Q因子及其高光损伤阈值和宽透明度范围的LTOI微孔子可以支持各种芯片上光学非线性过程,这将其预示其在综合非线性光子学中的应用潜力。
摘要。传统稻米品种因其显著的药用价值和丰富的营养成分而备受推崇。彩色传统稻米品种的营养成分因蛋白质含量、铁、锌以及纤维含量高于现代白米品种而受到称赞。黑米富含矿物质和生育酚,在预防帕金森病、自身免疫性疾病、心脏病、骨关节炎等非传染性疾病方面发挥着重要作用。红色稻米品种富含铁和锌。花青素色素使它们呈现红色,还具有清除自由基和抗氧化作用。糙米比白米营养更丰富。它纤维含量高,热量低。糙米含有高浓度的硒和锰,在对抗癌症发展方面发挥着重要作用。印度不同邦拥有大量具有特殊药用价值的水稻品种。举几个例子,阿萨姆邦的 Jonga Sirhatti(增加泌乳)、比哈尔邦的 Kala Jira(增强体力)、恰蒂斯加尔邦的 Mehar Dhan(用于糖尿病患者)、贾坎德邦的 Bhama(部落人民认为它可以增强耐力)、卡纳塔克邦的 Atikaya(用作健康补品)、喀拉拉邦的 Nivara(治疗三种体质)、中央邦的 Karhani(治疗瘫痪)、奥里萨邦的 Mehar(作为妇女的产后补品)、泰米尔纳德邦的 Karuthakaar(治疗痔疮和控制糖尿病)和北方邦的 Kalanamak(治疗皮肤病和降低血压)。有高蛋白质含量(Poongar)、高总脂肪(Kuzhiyadichan)、高钾(Kaatuyanam)、高铁(Sivappukuruvikaar)、高钙(Kullakaar)、高锌(Kalarpalai)和高磷(Poovan samba)的地方品种。此外,还有适合不同类别人群的水稻地方品种。例如,有水稻地方品种可以为重体力劳动者提供高能量(Kalajeera);长时间留在胃里(Sunaseri);赋予男士活力(Mappillai Samba);增强女性活力(Poonkaar)和治疗丝虫病(Karunkuruvai)。传统上,有专门用于仪式和节日的水稻地方品种。例如,代表婚姻的 Tulaipanji 和 Annaprasan; Osagathiali 用于宗教节日场合; Sela 举行宗教仪式,Chakhao 举行社交仪式;和 Mayamatti 适合特殊场合。同样,还有用于除草的本地品种 Dambersali;用于高饲料价值的 Thulo gurdi,用于间作的 Laxhmi Kajal;以及用于良好保存品质的 Hallaga。此外,还有用于各种传统
将现有的混凝土和纺织品材料技术结合起来将有助于挖掘混凝土前所未有的建筑潜力。这个实际假设是通过一个总体问题来研究的:就材料、原理和建筑表现而言,混凝土织物模板的建筑潜力是什么?这个研究问题和一系列子问题是通过设计研究来调查的,其灵感来自织物模板领域的实验研究,并在丹麦工业博士课程中制定,课程由两个工业合作伙伴、承包商 E. Pihl & Son 和建筑办公室 schmidt hammer lassen architektur 共同完成。总的来说,这篇论文通过设计以及构造实践、建筑材料和技术的建筑表现的实践和理论研究,为研究领域的发展做出了贡献。更重要的是,这篇论文在两个方面为织物成型的知识和实践以及当代建筑中施工方法的实施做出了贡献。首先,通过制作、记录和比较研究大量的经验数据;其次,通过研究其制作的具体细节和原则的作用及其对具体形式、表面和结构的影响。
突然的、令人意外的感觉事件会触发神经过程,从而迅速调整行为。为了研究这种现象的系统发生和机制,我们训练两只雄性恒河猴通过对等长操纵杆施加力量来将光标保持在视觉目标内。我们研究了令人意外的听觉刺激对施加的力量、头皮脑电图 (EEG) 活动和从背外侧前额叶皮质记录的局部场电位 (LFP) 的影响。听觉刺激引起 (1) 等长力的双相调制,短暂下降然后是纠正性的紧张性增加,和 (2) 由两个大的负波 - 正波 (N70 和 P130) 主导的 EEG 和 LFP 偏转。EEG 电位在头皮顶点对称且最大,非常类似于人类的“顶点电位”。 “皮层电位和力量紧密相关:P130 振幅预测了矫正力增加的幅度,特别是在从深层而非浅层皮层记录的 LFP 中。这些结果揭示了一种系统发育上保留的皮层运动机制,支持对突出的感觉事件做出反应的适应性行为。
结果:鉴定出三名诊断为GM2B1的家庭的四名患者(三名女性)。诊断时中位年龄为70个月。表现最常见的症状是发育回归(所有儿童),语言障碍(三个)和癫痫发作(两)。在所有情况下,均证明了白细胞和致病变异的酶缺乏症。在八个等位基因中的七个中,外显子5中的病原变体C.533G> A(P.R178H)存在。所有患者均经历了语言障碍(MD = 42 MOS),具有完全语言丧失(MD = 78 MO)。步行能力的丧失发生在三名患者(MD = 96 MO)中。所有患者在疾病过程中均有癫痫发作,并在55个月时发作癫痫发作。最初的癫痫发作被归类为非典型缺勤(两个),强调癫痫发作(一个)和肌阵挛性癫痫发作(一个)。脑电图评估显示,在所有情况下,基础节奏和局灶性阵发性较慢。所有人均接受了抗性药物治疗,两种需要三种药物组合。
Self-induced transparency (SIT) in two-level atomic sys- tems is one of the most well-known coherent pulse prop- agation phenomena: Above a certain intensity threshold, the absorption of a pulse by resonant transitions decreases strongly and the medium becomes almost completely trans- parent, which is accompanied by a considerable reduction in the group velocity (for reviews, see Refs.[1 - 4])。这是McCall和Hahn [5,6]的首次报道,他们通过使用半经典描述,证明了两级培养基通过强吸收与2π脉冲透明。现在,这种半经典模型是研究原子相干性的效果[7-9]的量子optics教科书中的标准。已经提出了SIT孤子作为脉冲挤压状态产生的候选[10],量子非过度测量结果[11],以及量子信息存储和检索[12]。此外,随着微观结构纤维技术的最新进展[13],也考虑了通过气体填充的单模单型晶体纤维在sit solitons中产生的生成[14],这简化了ES横向效应。在所有这些进步中,量子噪声和量子相关性起着不可捕获的主要作用
低维ZnO的材料在过去的几十年中引起了很多关注,因为它们在光电设备中的独特电子和光学支持以及潜在的应用。在本教程中,我们将根据激子和相关的激光过程介绍ZnO薄膜和微型/纳米结构的过去和最新发展。首先,我们简要概述了ZnO的结构和频带特性以及线性光学和激子特性。第二,我们引入了一种以各种形式的ZnO激光的反馈机制,从纳米颗粒到纳米线,纳米丝和薄膜。至于反馈机制,对随机激光,Fabry - PérotLasing和耳语画廊模式激光进行了详细的描述。第三,我们讨论了可能的增益机制,即ZnO中的含量增益和电子血浆(EHP)增益。特殊的兴趣也用于Mott载体密度,这是区分激光和EHP对激光贡献的关键参数。最后,引入了基于ZnO微腔的激子激光的最新发展。