摘要:近年来,由于可再生能源和分布式发电源的普及,电网系统的复杂性日益增加。日益增加的复杂性需要新的可扩展方法来快速管理不断变化的电源和负载。本文重点介绍其中一种称为 SST 的技术。SST 使用电力电子器件和高频变压器实现隔离和从一个电平到另一个电平的电压转换。不同的研究人员提出了几种 SST 拓扑。本文还概述了 SST 拓扑,这些拓扑可提供未来能源系统所需的附加功能。此外,还研究了高频变压器的损耗、效率、磁通密度优化和 SST 的应用。还给出了一个与高频变压器相关的示例系统,该示例系统表明,电磁装置的运行会受到运行条件相对较小变化的很大影响。
2D铁电材料分别与磁性/valleytronics,力学和光学的耦合,在信息存储,传感器技术和光电子化中呈现了有希望的应用。2D铁电与磁性的整合通过启用电场控制的磁状态来增强存储设备中的数据存储密度。铁电 - 瓦利耦合通过利用山谷极化的电控制,对高速,低能电子电子设备有望。铁电 - 应变耦合会导致各种极性拓扑,并在高密度数据存储技术和传感器设备中使用潜在的应用。此外,铁电和光学之间的耦合促进了基于铁电材料的非线性光子学的发展。本综述总结了耦合机制中最新的理论进步,包括dzyaloshinskii-moriya-interaction诱导的磁电耦合,与对称性相关的铁电 - 触发器耦合,通过互动式极高的拓扑结构,以及第二个型号,通过互动式互动。提供了为多功能应用的2D铁电材料中耦合的当前挑战和未来的机会。
摘要 - 光纤通道正在作为一种航空电子通信架构应用于各种新型军用飞机和现有飞机的升级。光纤通道标准(参见 T11 网站 www.t11.org )定义了各种网络拓扑和多种数据协议。一些拓扑和协议(ASM、1553、RDMA)适用于航空电子应用,其中设备之间的数据移动必须以确定性的方式进行,并且需要非常可靠地传输。所有飞机飞行硬件都需要进行测试,以确保它能够在光纤通道网络中正确传递信息。机身制造商需要测试集成网络以验证所有飞行硬件是否通信正常。需要进行持续的维护测试,以确保所有通信都是确定性和可靠的。本文概述了光纤通道航空电子网络和用于航空电子的协议。本文还讨论了航空电子级测试的实际实施以及与这些应用相关的测试挑战。
合成生物学应用了电气工程和信息处理的概念,赋予细胞计算功能。将底层分子成分转移到材料中,并根据受电子电路板启发的拓扑结构进行连接,已经产生了执行选定计算操作的材料系统。然而,现有构建块的有限功能限制了将高级信息处理电路实现到材料中。在这里,设计了一组基于蛋白酶的生物混合模块,其生物活性可以被诱导或抑制。在定量数学模型的指导下,遵循设计-构建-测试-学习 (DBTL) 循环,模块根据受电子信号解码器启发的电路拓扑进行连接,这是信息处理的基本主题。设计了一个 2 输入/4 输出二进制解码器,用于检测材料框架中的两个小分子,这些小分子可以以不同的蛋白酶活性形式执行受调节的输出。这里展示的智能材料系统具有很强的模块化,可用于生物分子信息处理,例如在高级生物传感或药物输送应用中。
摘要 — 能够通过天线从环境中收集射频能量并将其转换为直流能量以输送给负载的系统称为整流天线。整流电路是整流天线的重要组成部分,由于它采用了在极低功率水平下工作的非线性装置,因此其建模非常困难。此外,系统中还存在一些损耗。因此,设计高效整流器是一项巨大的挑战。在这项工作中,使用遗传算法优化了几种整流器拓扑,以实现最高效率和输出电压。还分析了变量对这些整流器输出的影响。所研究的拓扑针对 -15 dBm 输入功率和 2.45 GHz 工作频率进行了优化,以符合最适合能量收集的频段。在这些条件下,单二极管系列拓扑表现出最佳性能。当输入功率为 -15 dBm 时,其输出电压为 402 mV,效率为 51.3%。在该功率水平下,实现的效率高于文献中所述的效率。
摘要 - 环振荡器是集成电路的必要块,充当数字时钟生成器。该振荡器有几种进度技术。然而,最适当的环振荡器的拓扑选择需要对电气特征进行权衡的分析。本文介绍了两个拓扑之间的比较研究,以实施环振荡器。每个拓扑都使用特定的延迟单元格:CMOS逆变器或差分对放大器。目标输出频率为10.44 MHz,振荡器以130 nm的技术实现。拓扑是根据功率耗散,硅面积和制造过程变化的比较。电气模拟表明,逆变器环振荡器具有较小的功耗和较小的硅面积。在另一侧,差分放大器振荡器对过程变化的敏感性较小。这些结果可以帮助指导设计师确定适合集成电路设计中系统要求的最佳拓扑。索引项 - 逆变器,差分对,环振荡器,人体动作过程变化。
抽象拓扑优化是工程设计中无处不在的任务,涉及预先涂抹的空间域中材料的最佳分布。最近,已经提出了以数据驱动的方法(例如深生AI模型)作为迭代优化方法的替代方法。但是,现有的数据驱动方法通常使用固定的网格分辨率和域形在数据集上进行培训,从而降低了它们对不同分辨率或不同域形的适用性。在本文中,我们引入了两个关键的创新 - 求解器和神经隐式现场体系结构以解决这些局限性。首先,我们引入了一个快速,可行的,迭代的基于GPU,以针对3D未经检测网格的高通量数据集的生成优化。我们的求解器生成了122K优化的3D Topologies,这是最大的公共数据集的数量级。第二,我们引入了一种新的无分辨率数据驱动方法,用于使用称为NITO-3D的神经字段,用于3D拓扑。单个NITO-3D模型训练并预测各种分辨率和宽高比。还可以消除对计算密集型物理场调节的需求,NITO-3D为3D拓扑选项提供了更快,更灵活的替代方案。平均而言,NITO-3D的拓扑结构约为2000倍,仅比最新的迭代求解器高0.3%。有10个步骤的迭代精细调整,NITO-3D的平均速度快15倍,并且产生的拓扑比SIMP的合规性高0.1%。我们在https://github.com/lyleregenwetter/nito-3d上开放与此工作关联的所有数据和代码。
第2周电动机安全,测试,法规和标准第3周电力电子转换器拓扑电池电池管理系统锂离子电池设计锂离子电池电池建模星期4高压电池充电方法以及电池组的某些方面设计热电组,用于电池和电力电池
OSPF版本2支持IPv4。 OSPF版本3支持IPv6。 OSPF的基本机制,例如洪水,指定路由器(DR)选举,基于区域的拓扑结构和SPF计算在OSPF版本中保持不变。 由于IPv4和IPv6之间协议语义的变化而存在一些差异,或者是因为需要处理IPv6的地址大小增加。OSPF版本2支持IPv4。OSPF版本3支持IPv6。 OSPF的基本机制,例如洪水,指定路由器(DR)选举,基于区域的拓扑结构和SPF计算在OSPF版本中保持不变。 由于IPv4和IPv6之间协议语义的变化而存在一些差异,或者是因为需要处理IPv6的地址大小增加。OSPF版本3支持IPv6。OSPF的基本机制,例如洪水,指定路由器(DR)选举,基于区域的拓扑结构和SPF计算在OSPF版本中保持不变。由于IPv4和IPv6之间协议语义的变化而存在一些差异,或者是因为需要处理IPv6的地址大小增加。