I.2 事故保护 本手册中提供的安全说明旨在防止人员受伤(警告)或设备损坏(注意)。有关重启联锁功能的安全说明,请参阅第 5 节。警告:高电压。即使关闭后,设备的电压也可能≥ 810Vdc(电容电压)。放电时间约。6 分钟。警告:高电压。恢复电阻连接到母线,电压可能≥ 810Vdc。警告:操作期间请勿触摸恢复电阻,以免烫伤 注意:确保已连接正确的输入电压 400V 或 460V 注意:建议断开驱动器和 EMC 滤波器,以执行 EN 60204-1 (1997),第 19.4 段的交流电压测试,以免损坏相线和地之间的 Y 型电容器。此外,产品系列标准 EN 50178 (1997) 要求的直流电压介电测试已在工厂作为常规测试进行。可以在不断开驱动器和 EMC 滤波器的情况下执行 EN 60204-1 (1997),第 19.3 段的直流绝缘电阻测试。注意:需要紧急停止时,必须先禁用轴,然后打开 U2-V2-W2 引脚并关闭电机相至电阻器。延迟时间必须至少为 30 毫秒。注意:如果反复打开和关闭,请在打开和打开之间等待 1 分钟。注意:不要超过表中的紧固扭矩(但请参阅适当的数据表以了解输入电容器和电源模块的紧固扭矩,并参阅本手册第 2 部分以了解端子块的紧固扭矩)螺钉紧固扭矩
上下文:锻炼引起的肌肉损伤(EIMD)尤其是在运动和康复中。它会导致骨骼肌功能和酸痛的损失。由于没有公司的预防策略,我们旨在评估非热448-kHz电容性电阻单极射频(CRMRF)疗法的预防效率,在膝盖流动中EIMD反应的偏心后出现后,设计:在对照组(CG; n = 15)和实验组(例如; n = 14)中随机分配29名健康男性(年龄:25.2 [4.6] y),其中EG跟随5每天448-kHz CRMRF疗法。所有评估均在基线和EIMD后(EIMD + 1,EIMD + 2,EIMD + 5和EIMD + 9 D)进行。我们测量了股二头肌和半牙肌的张力学,以计算收缩时间,最大位移和收缩的径向速度,单侧等距膝关节孔,最大的自愿收缩扭转扭转扭转扭转和最大的100毫秒速度。结果:最大的自愿收缩扭矩和第一次100毫秒的扭矩发育速率降低了,例如在EG中,并且仅在EG中恢复。二头肌收缩时间仅在CG中增加(无恢复),而在半决肌收缩时间中,EG(仅在EIMD + 1)和CG(无恢复)中增加了。在这两种肌肉中,EG(在EIMD + 1和EIMD + 2)和CG(无恢复)中的张力学最大位移降低。此外,在两种肌肉中,径向收缩的径向速度在EG中(从EIMD + 1到EIMD + 5)和CG(无恢复)。结论:该研究表明,诱导EIMD骨骼肌力量和膝关节骨的收缩参数后,CRMRF治疗的有益作用。
3.1 Unity 3D 中的车辆模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
磁场会对载流环路产生扭矩。如果我们再添加 N 个环路,扭矩会更大,因此 τ = Nτ ′ = NiBA sin θ 其中 A = ab 是环的面积。扭矩会尝试使环的 ⃗n 与外部 ⃗ B 对齐,就像电偶极子一样,因此我们将它们称为磁偶极子。这种对齐也就像条形磁铁一样。我们可以用其磁偶极矩 ⃗µ 来描述任何电流环路。⃗µ 的方向与法向矢量 ⃗n 相同,其大小为 µ = NiA 。外部磁场中的磁偶极子会感受到一个扭矩,该扭矩使偶极矩与场对齐:τ = µB sin θ 与电偶极子一样,存在一个基于偶极矩和场之间角度的定义势能。 U (θ) = − ⃗µ · ⃗ B 与电偶极子一样,势能的变化意味着环的旋转能量增加或减少。当偶极子与外部场对齐时(它们“希望”与场对齐),它们的最低能量为 − µB。当它们与场反向平行时,它们的最高能量为 + µB。
注意:以上所有尺寸的单位均为英寸 产品规格 美国国际单位制 机械质量 13.5 lbm 6.1 Kg 标称输出步长 0.01125° 最大旋转速率@无负载>2°/s 输出扭矩@1°/s@环境温度 450 in-lb 51 Nm 无动力保持扭矩(最小) 65 in-lbf 7.3 Nm 扭转刚度 300,000 in-lbf/rad 33,900 Nm/rad 电气绕组电阻(标称) 21.5 Ω 输入电流 0.6 A 电机接线 4 引线,2 相双极 环境 工作温度 -22 °F 至 +149 °F -30 °C 至 +65 °C 非工作温度 -40 °F 至 +167 °F -40 °C 至 +75 °C 扭转胶囊行程范围 340° 电力传输次数(2每电路传输次数(典型值) 42 信号传输次数(每电路传输次数 2 次,典型值) 32 连接器 2X 37 针 SD D-subminiature 直通电路额定电流 70 A 注意:此数据仅供参考,可能会更改。斜率和输出扭矩能力可能在很大程度上取决于电机驱动器的选择。请联系 Sierra Space 获取设计数据。
- 在稳定模式下保持稳定的速度(静态扭矩在额定电机扭矩的 0.25 到 1.00 之间变化时,精度为 ±5 %); - 静态和动态力矩的补偿; - 在轧制和轧制设备的电力驱动装置中更换轧辊时,保持补偿器的填充度和工艺过程的连续性。 - 反转并限制轧辊紧急制动的时间(不超过轧辊周长的 ¼)。 电力驱动装置的设定参数的保持精度应确保在静态运行时,生产线最大运行速度的稳态偏差 – 在三相交流电源静态电压 +10%、-15%、频率 ±1%、环境温度 ±10 摄氏度 [1] 下,不超过标称运行速度的 ±1 %。
扭矩,其进动频率接近铁磁共振频率。这主要是由于磁滴模式的进动角较大[7,18,19]。然而,到目前为止,对磁滴的所有实验工作都集中在自旋阀(SV)结构[18,19,21-23]和自旋霍尔纳米振荡器(SHNO)[24,25]上。SV和SHNO中非常低的磁阻(MR)(约1%)限制了功率发射和基于STNO的任何进一步应用。相比之下,具有强PMA的磁隧道结 (pMTJ) 表现出较高的隧道磁阻 (TMR),达到 249%,尤其是双 CoFeB 自由层 (DFL) pMTJ,它已成为基于 MTJ 的 MRAM 的主要结构 [26]。因此,人们可以期望在基于 pMTJ 的 NC-STNO 中观察到磁性液滴。然而,我们之前的实验表明,在单自由层 (SFL) MTJ 中很难形成稳定的液滴 [27]。这可能是由于均匀电流密度与空间变化磁化相互作用产生的较大张-力矩所致。相反,预计 DFL pMTJ 可以抑制这种大的张-力矩并有利于形成稳定的磁性液滴。在这里,我们通过实验观察和研究了 DFL pMTJ 中的稳定磁性液滴,同时伴随着同一器件中相对于类 FMR 模式进动的功率增强。此外,通过微磁模拟,我们认为磁隧道结中的磁性液滴之所以稳定,主要是因为低的Zhang-Li力矩和DFL中强的钉扎场共同作用的结果[28]。我们的研究结果为磁隧道结中磁性液滴的成核提供了全面的认识,为进一步优化磁隧道结中磁性液滴的使用奠定了基础。