©2023作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
典型的TTA-UC发生在敏化剂和歼灭器发色团的集合中,在吸收低能光子后,激发敏化剂的激发三重态通过dexter Energy转移(DET)敏感,然后通过Dexter Energy Transfress(DET)启用TTTA,然后进行TTA产生高F能量能量发射的单元状态。在两个低能三重态耦合时形成较高能量单线状态的过程由统计概率因子(F)描述,如图1。然而,关于各种歼灭者的F及其对不同光che和能量参数的依赖性的F存在很大的歧义。在这项工作中,我们通过实验性地评估了pery灭灭液的F,并讨论了F对能量差距定律的依赖性,以优化对高F因子的歼灭者的合适能量设计。根据Glebsch – Gordan系列,三胞胎状态的强交换耦合可能会导致具有3个自旋多重性(1个单线,3个三重率和5个Quintets)的九个可能的三重旋转特征态。14三胞胎耦合可以简单地由海森伯格的旋转仅哈密顿式(1)来定义。15,16
摘要 材料从液态到固态的快速光化学转化(即固化)使得制造用于微电子、牙科和医学的现代塑料成为可能。然而,工业化的光固化材料仍然局限于由高能紫外光驱动的单分子键均裂反应(I 型光引发)。这种狭窄的机制范围既对高分辨率物体的生产提出了挑战,也限制了可使用新兴制造技术(例如 3D 打印)生产的材料。在此,我们开发了一种基于三重态-三重态湮没上转换 (TTA-UC) 的光系统,该系统可在低功率密度(<10 mW/cm 2 )和环境氧气存在下使用绿光有效驱动 I 型光固化过程。该系统还表现出其固化深度对曝光强度的超线性依赖性,从而提高了空间分辨率。这使得 TTA-UC 首次集成到廉价、快速、高分辨率的制造工艺——数字光处理 (DLP) 3D 打印中。此外,相对于传统的 I 型和 II 型(光氧化还原)策略,目前的 TTA-UC 光引发方法可改善固化深度限制和树脂储存稳定性。本报告提供了一种用户友好的途径,可在环境光化学过程中利用 TTA-UC,并为制造具有更高几何精度和功能的下一代塑料铺平了道路。
DNA 重复域内的 DNA 序列改变莫名其妙地增强了中断重复域的稳定性并延迟了其扩展。在这里,我们提出了合理化这种意外结果的机制。具体而言,我们描述了 DNA 重复域的中断如何通过引入环迁移的能量障碍来限制可用于动态、滑出、重复凸起环的集合空间。我们解释了这种障碍是如何产生的,因为一些可能的环异构体会导致重复域双链部分出现能量昂贵的错配。我们认为,集合空间的减少是导致观察到的重复 DNA 扩展延迟的原因。我们进一步假设,在某些扩展 DNA 中观察到的中断重复的丢失反映了环异构体位置的瞬时占据,这导致双链体茎因能量障碍的“泄漏”而出现错配。我们认为,如果这种低概率事件的寿命允许错配修复系统识别,那么就可以发生重复中断的“修复”;从而合理化了最终扩增的 DNA“产品”中没有出现中断的原因。我们提出的机制途径为被描述为“令人费解”的观察结果提供了合理的解释,同时也对一组具有生物医学重要性的耦合基因型现象提供了深刻的见解,这些现象描绘了 DNA 折纸热力学和表型疾病状态之间的联系。
摘要:脑电信号作为一种新型的生物特征被用于生物特征认证。为了解决传统分类网络难以有效拓展分类数目的问题以及提高工程实用性,本文提出一种基于注意力机制和三重态损失函数的脑电数据认证方法。该方法首先将脑电信号输入深度卷积网络,利用长短期记忆网络结合注意力机制将其映射到512维欧氏空间,得到包含身份信息的脑电信号特征向量;然后利用三重态损失函数调整网络参数,使得同类信号特征向量之间的欧氏距离减小,不同类信号之间的欧氏距离增大。最后,使用公开的脑电数据集对该识别方法进行评估。实验结果表明,该方法在保持识别率的同时,有效拓展了模型的分类数目,提高了脑电认证的实用性。
背景:如果转移灶可切除,结直肠癌 (CRC) 患者的预后会更好。最初,无法切除的仅有肝脏的转移灶可以通过化疗加靶向治疗转为可切除。我们评估了在这种情况下,双药化疗 (2-CTx) 或三药化疗 (3-CTx) 结合根据 RAS 状态的靶向治疗哪种方案效果更好。方法:PRODIGE 14 是一项开放标签、多中心、随机 2 期试验。最初定义为无法切除的仅有肝脏的转移灶的 CRC 患者根据 RAS 状态接受 2-CTx(FOLFOX 或 FOLFIRI)或 3-CTx(FOLFIRINOX)加贝伐单抗/西妥昔单抗治疗。主要终点是使用 3-CTx 将 R0/R1 肝切除率从 50% 提高到 70%。结果:患者(n = 256)主要为男性,ECOG PS 为 0,中位年龄为 60 岁。总共有 109 名患者(42.6%)患有 RAS 突变肿瘤。经过 45.6 个月的中位随访,3-CTx 的 R0/R1 肝切除率为 56.9%(95% CI:48 – 66),而 2-CTx 的 R0/R1 肝切除率为 48.4%(95% CI:39 – 57)(P = 0.17)。3-CTx 的中位总生存期为 43.4 个月,而 2-CTx 的中位总生存期为 40 个月。结论:对于最初无法切除肝转移的 CRC 患者,我们未能通过使用 3-CTx 联合贝伐单抗或西妥昔单抗根据 RAS 状态将 R0/R1 肝切除率从 50% 提高到 70%。
摘要 提出使用具有空间纹理偏振的太赫兹 (THz) 矢量光束来控制量子点中两个相互作用电子的自旋和空间分布。我们从理论上研究了自旋和电荷电流密度的时空演化,并通过计算并发度量化了纠缠行为。结果表明,这两个方面都可以由驱动场的参数在皮秒 (ps) 时间尺度上有效控制。通过分析两种具有不同电子 g 因子的不同材料 GaAs 和 InGaAs,我们研究了 g 因子与产生有效能级间跃迁所需的自旋轨道耦合类型之间的关系。这些结果对于将量子点应用为量子信息技术中的基本纳米级硬件元素以及根据需要快速产生适当的自旋和电荷电流很有用。
在过去的十年中,人们对 DNA 激发态动力学的认识取得了很大进展。[1] 在此背景下,理论研究既集中于单个核碱基的光物理性质,也集中于两个或多个碱基组装体中的相关相互作用,这些研究已成为探索 DNA 激发态衰变机制的有力工具。与单重态激发态相比,我们对三重态激发态的能量和动力学的认识仍然主要局限于单个碱基的性质。[2] 因此,尽管三重态-三重态电子能量转移 (TET) 可以引发 DNA 中的光毒性反应 [3-4],例如胸腺嘧啶环丁烷二聚体的形成 [5],但人们对决定天然 DNA 中三重态命运的核碱基 p 堆叠中 TET 的电子相互作用强度和时间尺度知之甚少。因此,由于三重态激发态的离域程度及其迁移的大致时间尺度存在根本的不确定性,通过超快光谱实验测量的衰变组分的分配仍然是一项艰巨的任务。 [1]
化学不稳定性。2,3 然而,较大并苯中 S 1 态和三重态对态之间的能量分离为更清晰的机制提供了机会,而这在较小并苯中是迄今为止尚未实现的。如果可以使更高的并苯足够稳定,它们将为量子信息应用提供一个有前途的平台,其中明确定义的多个磁活性态之间的自旋相干性将比使用所有可用势能进行有效的激子倍增更受青睐。与四并苯和五并苯等 SF 主流相比,人们对较大并苯的光物理性质知之甚少。在结晶六并苯中观察到 SF,时间常数在 50 fs 到 500 fs 之间。 2,4 时间常数的巨大变化和测量的不足使得很难辨别 SF 速率是否随着并苯尺寸的增加而继续增加,或者六并苯是否由于过度的放能而显示 SF 速率的转变。 2 关于六并苯二聚体的最新报告表明后者可能是正确的。 5 为了在量子信息环境中有效地利用 SF 系统,必须有效地在纯净且特征明确的状态下制备发色团(例如,在氮的三重态基态的 ms = 0 亚层中)