通过 Bosch 工艺在硅中蚀刻高深宽比结构对于微机电系统 (MEMS) 和硅通孔 (TSV) 制造等现代技术至关重要。由于蚀刻时间长,该工艺对掩模选择性的要求非常高,并且事实证明 Al 2 O 3 硬掩模在这方面非常合适,因为与传统的 SiO 2 或抗蚀剂掩模相比,它提供了高得多的选择性。在这项工作中,我们结合使用扫描电子显微镜 (SEM)、光谱椭圆偏振仪 (SE) 和 X 射线光电子能谱 (XPS) 深度剖析来仔细研究 Al 2 O 3 掩模蚀刻机理,从而探究超高选择性的来源。我们证明,通过增加钝化步骤时间,在 Al 2 O 3 上会形成更厚的氟碳聚合物层,然后以微小的平均蚀刻速率 ~0.01 nm/min 去除 Al 2 O 3。 XPS 深度剖析显示,在采用 Bosch 工艺进行深反应离子蚀刻 (DRIE) 的过程中,聚合物和 Al 2 O 3 之间会形成一层 AlF x 层。由于 AlF x 不挥发,因此需要溅射才能去除。如果聚合物层足够厚,可以衰减进入的离子,使其能量不足以导致 AlF x 解吸(例如当使用较长的钝化时间时),则掩模不会被侵蚀。通过研究不同次数 DRIE 循环后的表面,我们还获得了有关 AlF x 的形成速率以及 DRIE 工艺过程中 Al 2 O 3 和聚合物厚度变化的信息。这些发现进一步扩展了对 DRIE 的认识,并可帮助工艺工程师相应地调整工艺。
1. P. ANNAPURNA、CH. KAVYA、M. MUNISANKAR“实现用于能量收集无线传感器网络的 HARQ-IR”,ICIRCA2018,IEEE 论文,ISBN:978-5386-2456-2。2. CH.Kavya,(2019 年 11 月)“基于 NLM 和小波阈值的 ECG 中的 R 峰值和心律失常检测”,IJAEMA,UGC -CARE 批准的 A 组期刊,ISSN 编号:0886-9367。3 R.priyadarsini、CH kavya(2017 年 5 月)IRJET 中的固定轮廓 3-D IC 平面规划与 TSV 共同放置(e-ISSN:2395 -0056)。4. CH。 KAVYA, B. ANUSHA, T. LAKSHMIPRASANNA (2017 年 5 月 30 日) “DWT 域中的图像隐写术。” INIJIRCCE(ISSN: 2320-9798)。5. Ch.kavya,R.priyadarshini,B.madhavi(2017 年 5 月) “根据食物图像测量卡路里和营养。” IJARIIT。(ISSN:2454-132X)。6. Kavya.ch,Priyadarsini.R, Madhavi.B, (2017 年 3 月) “使用 GSM 的现代垃圾桶管理员。” ICIAEIT-2017(ISSN:2454-356X)。 7. R.priyadarsini、CH kavya(2017 年)使用 VLSI 的信号处理分段串行并行乘法器,载于 IJIR(ISSN:2454-1362)。 8. CH.Kavya、K.Neelima、A.Ramadevi(2017 年 3 月)“视频序列中的面部特征检测和跟踪”。载于国际计算机和通信工程创新研究杂志(IJERECE),(ISSN:2394-6849)。 9. B. Sandhya、V. Sri Lakshmi Priyanka、CH. Kavya“视频序列中的面部特征检测和跟踪”(2017 年 3 月),载于 IJERECE(ISSN:2320-9798)。 10. R. Priyadarsini、CH Kavya、A.Lasmika (2017 年 3 月) “基于传输线的数字 ASIC 的实验电力线模型。”在 ICIAEIT-2017 中,(ISSN:2454-356X)。 11. E. TEJASWI、CH. KAVYA (2016 年 11 月) “基于稀疏表示的贪婪搜索用于人脸草图合成。”在 IJSETR 中,(ISSN:2319-8885)。 12. Naga UdayiniNyapathi、BhargaviPendlimarri、KarishmaSk、Kavya Ch (2016 年 5 月) “使用 ARM 7 微控制器的智能药盒。”在 IRJET 中,(e-ISSN:2395-0056)。
本文讨论了影响先进半导体封装领域的三大趋势。本文的首要关注点是异构集成。该术语的现代版本对不同的人有不同的含义,但在本文中,异构集成被定义为由多个芯片构建的分解式片上系统 (SoC) 架构。这种设计方法类似于系统级封装 (SiP),不同之处在于不是在单个基板上集成多个裸片(包括 3D 堆叠),而是在单个基板上集成以芯片形式存在的多个知识产权 (IP)。第二个主要趋势涉及利用硅通孔 (TSV) 和高密度扇出重分布层 (RDL) 的新硅制造技术。这些进步正在推动更多硅进入以层压板为主的半导体封装领域,尤其是当高带宽和外形尺寸成为设计的关键属性时。这种趋势带来了新的设计和验证挑战,大多数封装工程师并不熟悉,因为它们通常不是基于层压板的设计的一个方面。最后,在生态系统方面,我们看到所有大型半导体代工厂现在都提供自己的先进封装版本。在许多方面,这为封装社区带来了一股清新的气息,因为使用新的方式为封装设计团队提供参考流程和工艺设计套件 (PDK) 等资产。电子设计自动化 (EDA) 公司目前正在与许多领先的代工厂和外包半导体组装和测试供应商 (OSATS) 合作,开发多芯片封装参考流程和封装组装设计套件 (PADK)。这种额外的基础设施极大地造福了封装设计社区。
2 2401 Brewer Driver,Rolla,MO 65401,美国 * 通讯作者的电子邮件:vikram.turkani@novacentrix.com 摘要 临时键合和脱键合 (TB/DB) 工艺已成为晶圆级封装技术中很有前途的解决方案。这些工艺为晶圆减薄和随后的背面处理提供了途径,这对于使用 3D 硅通孔 (TSV) 和扇出晶圆级封装等技术实现异质集成至关重要。这些对于整体设备小型化和提高性能至关重要。在本文中,介绍了一种新颖的光子脱键合 (PDB) 方法和相应的键合材料。PDB 通过克服与传统脱键合方法相关的许多缺点来增强 TB/DB 工艺。PDB 使用来自闪光灯的脉冲宽带光 (200 nm – 1100 nm) 来脱键合临时键合的晶圆对与玻璃作为载体晶圆。这些闪光灯在短时间间隔(~100 µs)内产生高强度光脉冲(高达 45 kW/cm 2 )以促进脱粘。通过成功将减薄(<70 μm)硅晶圆从玻璃载体上脱粘,证明了 PDB 在 TB/DB 工艺中的可行性。对减薄晶圆和载体的脱粘后清洁进行了评估。通过每个闪光灯提供均匀、大面积照明(75 mm x 150 mm),并且能够串联灯以增加 PDB 工具的照明面积,PDB 方法为晶圆级和面板级封装技术提供了一种高通量、低成本的脱粘解决方案。关键词光子剥离、闪光灯、临时键合和脱粘、临时键合材料、晶圆级封装。
T.-M. Băjenescu,tmbajenesco@gmail.com 收稿日期:2019 年 2 月 8 日 接受日期:2019 年 3 月 15 日 摘要。如今,灵活性意味着生产价格合理、质量上乘的定制产品,并能快速交付给客户。本文分析了与物理相关的问题,这些问题能够产生缺陷,影响 MEMS(微机电系统)的可靠性极限。无论 MEMS 行业的未来前景多么美好,它目前所处的位置都比表面上看起来要脆弱得多。要研究纳米器件的最终可靠性极限,需要全面了解缺陷产生的物理和统计数据。最大的挑战:成本效益高、大批量生产。关键词:工艺误差,MEMS,光学MEMS,故障分析,MEMS开关,封装开裂,故障机制,可靠性,蠕变,寿命预测。1.简介 在开发先进的MEMS封装时,必须注意和理解以下几点:MEMS器件和MEMS封装的基础设施尚未完善;MEMS封装专业知识并不普遍;MEMS封装是独一无二的和定制的;MEMS通用封装平台技术尚不可用;MEMS器件需要密封;某些MEMS器件甚至需要真空封装;采用硅通孔(TSV)的垂直电馈通成本仍然太高。封装经常被称为“MEMS制造的致命弱点”,是MEMS商业化过程中的一个关键瓶颈。除了少数完全商业化的产品(即气囊触发器、喷墨打印头、压力传感器和一些医疗设备)外,封装是成本的最大单一因素,也是小型化潜力的主要限制因素 [1]。除非完全封装,否则 MEMS 产品是不完整的。目前,封装是导致 MEMS 产品开发时间长和成本高的主要技术障碍之一。封装涉及将:(a) 各种组成部分的大量设计几何形状整合在一起;(b) 连接不同的材料;(c) 提供所需的输入/输出连接,以及 (d) 优化所有这些以获得性能、成本和可靠性。
缩写 定义 缩写 定义 AF 空军 NASA 美国国家航空航天局 BGA 球栅阵列 NEPAG NASA 电子零件保证组 BN 贝叶斯网络 NEPP NASA 电子零件和包装(程序) BoK 知识体系 NESC NASA 工程和安全中心 CMOS 互补金属氧化物半导体 NODIS NASA 在线指令信息系统 COTS 商用现货 NPR NASA 程序要求 CPU 中央处理单元 NRO 国家侦察办公室 DDR 双倍数据速率 NSREC 核与空间辐射效应会议 DLA 国防后勤局 OCE 总工程师办公室 DMEA 国防微电子活动 OGA 其他政府机构 DoD 国防部 PIC 光子集成电路 DoE 能源部 POC 联系点 EEE 电气、电子和机电 PoF 故障物理学 ETW 电子技术研讨会 RF 射频 FPGA 现场可编程门阵列 RH 抗辐射 GaN 氮化镓 RHA 抗辐射保证 GIDEP 政府工业数据交换计划 SAPP 空间资产保护计划 GPU 图形处理单元 SDRAM 同步动态随机存取存储器 GRC 格伦研究中心 SEE 单事件效应 GSFC 戈达德太空飞行中心 SiC 碳化硅 GSN 目标结构化符号 SMA 安全与任务保障 HQ 总部 SMC 空间与导弹系统中心 IC 集成电路 SOA 安全操作区 IEEE 电气和电子工程师协会 SoC 片上系统 JPL 喷气推进实验室 SRAM 静态随机存取存储器 JSC 约翰逊航天中心 SSAI 科学系统与应用公司 LaRC 兰利研究中心 STMD 空间技术任务理事会 LGA 陆地栅格阵列 STT 自旋转移力矩 MAPLD 军用和航空航天可编程逻辑器件(研讨会) SysML 系统建模语言 MBMA 基于模型的任务保障 TID 总电离剂量 MRAM 磁性随机存取存储器 TSV 硅通孔 MSFC 马歇尔太空飞行中心
缩写 定义 缩写 定义 AF 空军 NASA 美国国家航空航天局 BGA 球栅阵列 NEPAG NASA 电子零件保证组 BN 贝叶斯网络 NEPP NASA 电子零件和包装(程序) BoK 知识体系 NESC NASA 工程和安全中心 CMOS 互补金属氧化物半导体 NODIS NASA 在线指令信息系统 COTS 商用现货 NPR NASA 程序要求 CPU 中央处理单元 NRO 国家侦察办公室 DDR 双倍数据速率 NSREC 核与空间辐射效应会议 DLA 国防后勤局 OCE 总工程师办公室 DMEA 国防微电子活动 OGA 其他政府机构 DoD 国防部 PIC 光子集成电路 DoE 能源部 POC 联系点 EEE 电气、电子和机电 PoF 故障物理学 ETW 电子技术研讨会 RF 射频 FPGA 现场可编程门阵列 RH 抗辐射 GaN 氮化镓 RHA 抗辐射保证 GIDEP 政府工业数据交换计划 SAPP 空间资产保护计划 GPU 图形处理单元 SDRAM 同步动态随机存取存储器 GRC 格伦研究中心 SEE 单事件效应 GSFC 戈达德太空飞行中心 SiC 碳化硅 GSN 目标结构化符号 SMA 安全与任务保障 HQ 总部 SMC 空间与导弹系统中心 IC 集成电路 SOA 安全操作区 IEEE 电气和电子工程师协会 SoC 片上系统 JPL 喷气推进实验室 SRAM 静态随机存取存储器 JSC 约翰逊航天中心 SSAI 科学系统与应用公司 LaRC 兰利研究中心 STMD 空间技术任务理事会 LGA 陆地栅格阵列 STT 自旋转移力矩 MAPLD 军用和航空航天可编程逻辑器件(研讨会) SysML 系统建模语言 MBMA 基于模型的任务保障 TID 总电离剂量 MRAM 磁性随机存取存储器 TSV 硅通孔 MSFC 马歇尔太空飞行中心
关键词:高电子迁移率晶体管 (HEMT)、磷化铟 (InP)、高频、制造摘要自 DARPA 太赫兹电子项目结束以来,诺斯罗普·格鲁曼公司 (NG) 一直致力于将工艺过渡到 100 毫米,并使先进的 InP HEMT 技术适用于高可靠性 A 类空间应用。NG 的 100 nm InP HEMT 节点目前处于制造就绪水平 (MRL) 9,而砷化铟复合通道 (IACC) 节点处于 MRL 3/4。为了提高 IACC 的 MRL,NG 一直致力于将工艺从材料生长转移到晶圆加工到 100 毫米生产线,并利用 100 nm InP HEMT 工艺的制造和认证专业知识。在整个工艺转移和成熟过程中,NG 克服了工艺重现性、产量和吞吐量方面的挑战,并进行了广泛的可靠性测试。引言在过去二十年中,在美国国防高级研究计划局、美国宇航局/喷气推进实验室和三军的资助下,诺斯罗普·格鲁曼公司 (NG) 通过积极缩小 InP HEMT 尺寸并使用超高迁移率砷化铟复合通道 (IACC) HEMT 结构,展示了高达太赫兹的高电子迁移率晶体管 (HEMT) [1,2] 和单片微波集成电路 (MMIC) [3-6],如表 1 所示。InP 和 IACC HEMT 的关键制造步骤是分子束外延 (MBE)、电子束光刻 (EBL) 栅极、基板通孔 (TSV) 以及缩放互连和钝化工艺。材料生长和制造工艺最初是在 NG 的 75 毫米生产线上开发的。NG 致力于技术成熟工作,以缩小制造差距,以提高 IACC 节点的 MRL [7]。工艺概述 InP 和 IACC HEMT 晶圆采用分子束外延法在半绝缘 InP 衬底上生长。IACC 外延剖面具有复合通道,该通道由夹在两个晶格匹配的 In x Ga 1-x As 层之间的 InAs 层组成 [2]。高电子迁移率 InAs 通道是高频低直流功率操作的关键推动因素。肖特基势垒层和重掺杂帽经过优化,可实现低
日期 时间 开始时间 结束时间 轨道 会议室 会议主席 2024 年 12 月 5 日上午 09:00 上午 10:30 A1. 混合和熔融键合 1 Veranda I Yong-Fen Hsieh 博士,MA-Tek 2024 年 12 月 5 日上午 09:00 上午 10:30 A2. 晶圆处理和特性 Veranda II Suresh Singaram 博士,Evactec 2024 年 12 月 5 日上午 09:00 上午 10:30 A3. 新兴技术 Veranda III Kanaya Haruichi 教授,九州大学 2024 年 12 月 5 日上午 09:00 上午 10:30 A4. 先进封装 1 RiverFront I Wang Yu-Po 博士,硅品精密工业有限公司 2024 年 12 月 5 日上午 09:00 上午 10:30 TSV 和晶圆级封装 1 RiverFront II Albert Lan,应用材料公司 12/05/2024 09:00 AM 10:30 AM A6。热管理和表征 1 RiverFront III Fusinobu Kazuyoshi 教授,东京工业大学 12/05/2024 10:45 AM 11:45 AM B1.混合和熔接 2 Veranda I James Papanu 博士,Tokyo Electron Limited 12/05/2024 10:45 AM 11:45 AM B2.互连技术 1 Veranda II 杨成博士,JCET 12/05/2024 10:45 AM 11:45 AM B3.热界面材料 Veranda III Senthil Kumar,贺利氏 12/05/2024 10:45 AM 11:45 AM B4。先进封装 2 RiverFront I Torseten Wipiejewski 博士,华为 2024/12/05 10:45 AM 11:45 AM B5. 装配和制造技术 1 RiverFront II Jing-En Luan,意法半导体新加坡 2024/12/05 10:45 AM 11:45 AM B6. 热管理和特性 2 RiverFront III Hardik Kabaria,Vinci4D 2024/12/05 13:00 PM 2:00 PM C1. 电气模拟和特性 1 Veranda I Masahiro Aoyagi 教授,熊本大学 2024/12/05 13:00 PM 2:00 PM C2. 无线和天线封装设计 Veranda II Chia Chu Lai,矽品精密工业有限公司 2024/12/05 13:00 PM 2:00 PM材料与加工 1 Veranda III Takenori Fujiwara,东丽 2024 年 12 月 5 日下午 1:00 下午 2:00 C4. 机械模拟与特性 1 RiverFront I Che Faxing 博士,美光 2024 年 12 月 5 日下午 1:00 下午 2:00 C5. TSV 和晶圆级封装 2 RiverFront II Chew Soon Aik,imec 2024 年 12 月 5 日下午 1:00 下午 2:00 C6. 热管理和特性 3 RiverFront III Winston Zhang 博士,Novark Technologies 2024 年 12 月 5 日下午 3:00 下午 4:20 D1. 电气模拟与特性 2 Veranda I Mihai Dragos Rotaru,IME 新加坡 2024 年 12 月 5 日下午 3:00 下午 4:20 D2.互连技术 2 Veranda II Seungbae Park 教授,宾汉姆顿大学 12/05/2024 3:00 PM 4:20 PM D3. 材料与加工 2 Veranda III SS Kang,贺利氏新加坡 12/05/2024 3:00 PM 4:20 PM D4. 机械模拟与特性 2 RiverFront I Chiang Kuo Ning 教授,国立清华大学 12/06/2024 09:00 AM 10:20 AM E1. 装配与制造技术 2 Veranda I Mark Shaw,意法半导体 意大利 12/06/2024 09:00 AM 10:20 AM E2. 晶圆处理与特性 2 Veranda II Toh Chin Hock 博士,苹果 12/06/2024 09:00 AM 10:20 AM材料与加工 3 Veranda III 金成东教授,首尔国立科技大学 2024 年 12 月 6 日上午 9:00 上午 10:20 E4。机械仿真和特性 3 RiverFront I Sasi Kumar Tippabhotla,IME,新加坡 12/06/2024 09:00 AM 10:20 AM E5. 质量、可靠性和故障分析 1 RiverFront II Jeff Suhling 教授,奥本大学 12/06/2024 09:00 AM 10:20 AM E6. 硅中介层和加工 RiverFront III Prayudi Lianto 博士,应用材料公司 12/06/2024 10:35 AM 11:55 AM F1. 汽车和功率器件封装 Veranda I Tang Gongyue 博士,IME 新加坡 12/06/2024 10:35 AM 11:55 AM F2.质量、可靠性和故障分析 2 Veranda II Xue Ming,英飞凌 12/06/2024 10:35 AM 11:55 AM F3. 材料与加工 4 Veranda III Alvin Lee 博士,Brewer Science 12/06/2024 10:35 AM 11:55 AM F4. 先进光电子学 RiverFront I Vasarla Nagendra Sekhar,IME,新加坡 12/06/2024 10:35 AM 11:55 AM F5. 电气模拟与特性 3 RiverFront II Bruce Kim 教授,纽约城市大学 12/06/2024 10:35 AM 11:55 AM F6.热管理和特性 4 RiverFront III Refai-Ahmed Gamal 博士,AMD 12/06/2024 12:55 PM 02:15 PM G1. 键合和脱键合工艺 Veranda I Viorel Dragoi 博士,EV Group 12/06/2024 12:55 PM 02:15 PM G2. 晶圆处理和特性 3 Veranda II Clifford Sandstrom,Deca Technologies 12/06/2024 12:55 PM 02:15 PM G3. 材料和加工 5 Veranda III DDr Alvin Lee,Brewer Science 12/06/2024 12:55 PM 02:15 PM G4.智能制造、设备与工具协同设计 RiverFront I Dangayach Sachin,应用材料 2024 年 12 月 6 日下午 12:55 下午 02:15 G5. TSV 和晶圆级封装 3 RiverFront II Vempati Srinivasa Rao,IME 2024 年 12 月 6 日下午 12:55 下午 02:15 G6. 嵌入式和扇出型封装 RiverFront III Dr Masahisa Fujino,IME 新加坡 2024 年 12 月 6 日下午 2:30 下午 3:30 H2. 质量、可靠性和故障分析 3 Veranda II David Gani,意法半导体 新加坡 2024 年 12 月 6 日下午 2:30 下午 3:30 H3.材料与加工 6 Veranda III Hemanth Kumar Cheemalamarri,IME 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H4. 机械仿真与特性 4 RiverFront I Rathin Mandal,IME 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H5 高级芯片与封装设计 ReverFront II Dr Kelly Brian,AMD 2024 年 12 月 6 日下午 2:30 3:30 H6. 基板上的倒装芯片与扇出 RiverFront III Lee Chee Ping,Lam Research先进光电子学 RiverFront I Vasarla Nagendra Sekhar,IME,新加坡 12/06/2024 10:35 AM 11:55 AM F5. 电气模拟和特性 3 RiverFront II 布鲁斯金教授,纽约城市大学 12/06/2024 10:35 AM 11:55 AM F6. 热管理和特性 4 RiverFront III Refai-Ahmed Gamal 博士,AMD 12/06/2024 12:55 PM 02:15 PM G1. 键合和脱键合工艺 Veranda I Viorel Dragoi 博士,EV Group 12/06/2024 12:55 PM 02:15 PM G2.晶圆处理和特性 3 Veranda II Clifford Sandstrom,Deca Technologies 12/06/2024 12:55 PM 02:15 PM G3. 材料与加工 5 Veranda III DDr Alvin Lee,Brewer Science 12/06/2024 12:55 PM 02:15 PM G4. 智能制造、设备与工具协同设计 RiverFront I Dangayach Sachin,Applied Materials 12/06/2024 12:55 PM 02:15 PM G5. TSV 与晶圆级封装 3 RiverFront II Vempati Srinivasa Rao,IME 12/06/2024 12:55 PM 02:15 PM G6.嵌入式和扇出型封装 RiverFront III Masahisa Fujino 博士,IME 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H2. 质量、可靠性和故障分析 3 Veranda II David Gani,意法半导体 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H3. 材料与加工 6 Veranda III Hemanth Kumar Cheemalamarri,IME 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H4. 机械仿真和特性 4 RiverFront I Rathin Mandal,IME 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H5 高级芯片和封装设计 ReverFront II Kelly Brian 博士,AMD 2024 年 12 月 6 日下午 2:30 3:30基板上的倒装芯片和扇出型 RiverFront III Lee Chee Ping,Lam Research先进光电子学 RiverFront I Vasarla Nagendra Sekhar,IME,新加坡 12/06/2024 10:35 AM 11:55 AM F5. 电气模拟和特性 3 RiverFront II 布鲁斯金教授,纽约城市大学 12/06/2024 10:35 AM 11:55 AM F6. 热管理和特性 4 RiverFront III Refai-Ahmed Gamal 博士,AMD 12/06/2024 12:55 PM 02:15 PM G1. 键合和脱键合工艺 Veranda I Viorel Dragoi 博士,EV Group 12/06/2024 12:55 PM 02:15 PM G2.晶圆处理和特性 3 Veranda II Clifford Sandstrom,Deca Technologies 12/06/2024 12:55 PM 02:15 PM G3. 材料与加工 5 Veranda III DDr Alvin Lee,Brewer Science 12/06/2024 12:55 PM 02:15 PM G4. 智能制造、设备与工具协同设计 RiverFront I Dangayach Sachin,Applied Materials 12/06/2024 12:55 PM 02:15 PM G5. TSV 与晶圆级封装 3 RiverFront II Vempati Srinivasa Rao,IME 12/06/2024 12:55 PM 02:15 PM G6.嵌入式和扇出型封装 RiverFront III Masahisa Fujino 博士,IME 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H2. 质量、可靠性和故障分析 3 Veranda II David Gani,意法半导体 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H3. 材料与加工 6 Veranda III Hemanth Kumar Cheemalamarri,IME 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H4. 机械仿真与特性 4 RiverFront I Rathin Mandal,IME 新加坡 2024 年 12 月 6 日下午 2:30 3:30 H5 高级芯片和封装设计 ReverFront II Kelly Brian 博士,AMD 2024 年 12 月 6 日下午 2:30 3:30基板上的倒装芯片和扇出型 RiverFront III Lee Chee Ping,Lam Research下午 30:00 H5 先进芯片和封装设计 ReverFront II Dr Kelly Brian, AMD 12/06/2024 下午 2:30 下午 3:30 H6. 基板上的倒装芯片和扇出 RiverFront III Lee Chee Ping, Lam Research下午 30:00 H5 先进芯片和封装设计 ReverFront II Dr Kelly Brian, AMD 12/06/2024 下午 2:30 下午 3:30 H6. 基板上的倒装芯片和扇出 RiverFront III Lee Chee Ping, Lam Research
抽象的高级包装技术继续使半导体行业能够满足移动设备和其他高性能应用所需的较薄,更小,更快的组件的需求。但是,由摩尔定律驱动的芯片I/O计数的增加以及低于10nm的FinFET的能力对现有的高级包装过程提出了许多其他挑战。与摩尔定律不同,该法律预测密集综合电路中的晶体管数量大约每两年两倍,高级包装正在经历另一种“法律”;在晶体管的数量增加的情况下,它的功能数量增加,在最终产品的最终量限制下驱动技术路线图的数量不断减少。不可避免地,随着功能的增加,过程的复杂性和成本也随之增加。在这个非常敏感的高级包装舞台上,外包半导体组件和测试供应商(OSAT)需要通过降低其制造成本来补偿。这要求OSAT降低材料成本,增加吞吐量,产量并寻找减少过程步骤数量的新方法。OSAT降低材料成本的方式之一是从后端处理中除去硅晶片。使用环氧霉菌化合物(EMC)创建重构的晶片,或使用玻璃载体。在玻璃载体的情况下,通常情况下,骰子面朝下固定在载体上,然后进行处理,即使使用红外(IR)成像,也可以防止从复合堆栈的顶部看到前侧图案。在这种特殊情况下,在对齐标记上的光孔器中定义了一个其他光刻的“清除”窗口,因此可以将不透明的膜从对齐标记处蚀刻出来,距离剥去的距离,并重新设计了光刻层。这种额外的处理显然是昂贵且耗时的。本文特别关注基于步进的光刻解决方案的概念,方法和性能,该解决方案利用光孔潜在图像为光刻过程提供了临时的对齐标记,从而消除了对附加图案和蚀刻步骤的需求。这个革命性系统采用了背面摄像头,可以对齐在载体中死亡。一个单独的曝光单元,校准了对齐摄像头中心,曝光了临时潜在图像目标,然后在正常的步进光刻操作过程中由系统的常规比对系统检测到该目标。详细讨论了对齐,覆盖和潜在图像深度控制的性能数据。最终分析证明,<2µm的覆盖层很容易实现,对系统吞吐量没有影响。关键词:高级包装,3D IC,TSV,背面对齐,步进,面板,粘合晶片对齐,通过硅Via,UBM对齐,潜在图像。