结核病和妊娠的结合总是会引发关于治疗、妊娠、产科、产后和哺乳管理的特殊性、治疗对胎儿发育的影响以及结核病过程的特殊性的问题。直到最近,结核病和妊娠被认为是一种罕见的组合,但随着艾滋病毒感染问题的日益严重和成人结核病筛查的恶化,这种组合已变得相当普遍。此外,新生儿先天性结核病病例也开始出现。在这篇综述中,我们分析了影响结核病和结核病/艾滋病毒合并感染患病率的孕妇免疫和免疫神经内分泌反应特征。妊娠期特有的免疫神经内分泌变化对抗结核病免疫有多种影响,并决定了妊娠背景下结核病过程的特殊性。这些变化导致结核病的病程比怀孕前更为严重。妊娠期间和产后第一年患病的妇女的结核病临床表现结构特点是病情更严重、多器官损害发生率更高,产后患结核病的妇女的细菌分离株百分比明显高于妊娠期间患结核病的妇女。艾滋病毒感染尤其构成威胁,会加剧免疫反应紊乱,从而影响治疗效果和总体疾病进展。
I.引言本指南的目的是协助赞助商进行药物2的临床开发,以治疗由分枝杆菌(MAC)引起的非结核分枝杆菌肺疾病(NTM-PD)。具体来说,本指南涉及食品药物管理局(FDA)关于临床试验设计问题,试验人群的选择以及治疗幼稚和难治性NTM-PD的当前思维。在FDA公共研讨会上讨论了新药治疗NTM-PD的临床试验的设计。3本指南不包含对统计分析或临床试验设计的一般问题的讨论。这些主题在国际统一委员会(ICH)行业E9临床试验统计原理(1998年9月),E9(R1)临床试验的统计原理:附录:附录:临床试验中的估计和敏感性分析(2021年5月2021日),以及对照组和相关问题的临床试验中(5月2001年)(2001年5月2001年)。4此外,该指南并未解决旨在治疗由MAC以外病原体引起的NTM-PD患者的药物,因为这些患者的临床特征可能与MAC引起的NTM-PD患者不同。赞助商对
尽管癌症治疗取得了显著进展,但转移性疾病仍然是癌症相关死亡的主要原因。多壁碳纳米管 (MWCNT) 可以进入组织和细胞,并以仿生方式干扰细胞骨架纳米丝的动力学。这赋予它们与微管结合化疗(如 Taxol ® )相当的内在抗肿瘤作用。在本研究中,我们的重点是探索氧化 MWCNT 在选择性靶向血管内皮生长因子受体 (VEGFR) 方面的潜力。我们的目标是评估它们通过诱导对癌症和肿瘤微环境细胞的抗增殖、抗迁移和细胞毒性作用来抑制转移性生长的有效性。我们的研究结果表明,在静脉注射靶向可生物降解的 MWCNT 后,恶性黑色素瘤肺转移显著减少 80% 以上,动物整体福利显著改善。此外,这些纳米材料与传统化疗药物 Taxol ® 的结合使抗转移效果显著提高 90%。这些结果凸显了这种联合治疗方法对抗转移性疾病的巨大潜力,并且至关重要,因为转移每年导致近 60,000 人死亡。
结核病(TB)是继新冠肺炎之后全球第二大单一感染源死亡原因,给全球公共卫生带来沉重负担(1)。2023年全球结核病报告预计2022年结核病病例将达1060万,死亡人数达130万,发病率为133/10万(2)。全球正在努力加速结核病发病率的下降,旨在实现世界卫生组织确定的到2035年消除结核病流行的战略目标(3)。然而,耐药结核病(DR-TB)特别是耐多药结核病(MDR-TB)的高发病率对这一目标的实现构成了重大障碍,这是一个令人担忧的问题。现有数据显示,2022 年全球约有 410,000 人感染耐药结核病,治疗成功率仅为 63% ( 2 )。糖尿病 (DM) 患病率不断上升,对全球健康构成重大威胁 ( 4 )。根据国际糖尿病联合会的最新报告,估计到 2023 年全球将有 4.25 亿人患有糖尿病,预计到 2045 年这一数字将上升到 7.83 亿 ( 5 )。糖尿病加剧了结核病的负担,先前的研究表明,糖尿病患者患活动性结核病的可能性是其他人的三倍 ( 6 )。全球研究将大约 15% 的结核病病例归因于糖尿病 ( 7 ),而中国的一项研究发现,大约 17% 的结核病病例与糖尿病有关 ( 8 )。Kong 等人的研究西南地区一项研究(9)发现,与肺结核患者相比,合并糖尿病的肺结核患者在延迟治疗方面无差异,但治疗成功率明显低于肺结核患者。此外,糖尿病对耐多药结核病的发生有一定影响,多项研究表明糖尿病与耐多药结核病的发病率呈正相关(10,11)。耐多药结核病是一种至少对利福平和异烟肼耐药的结核病,与普通结核病相比,其治疗更困难、耗时更长、费用更高、不良反应发生率更高、治愈率更低(12)。中国是一个糖尿病和耐多药结核病双重国家,结核病控制面临严峻挑战(13)。及早发现耐多药结核病的危险因素有助于遏制耐多药结核病的进展,实现及时诊断和治疗,减轻耐多药结核病的负担。本研究旨在探讨结核病合并糖尿病患者(包括从未接受过结核病治疗的患者和曾接受过结核病治疗的患者)的耐多药危险因素,为耐多药结核病的临床诊断、治疗管理和预防策略提供基本依据。
结核病 (TB) 是由结核分枝杆菌引起的,仍然是全球健康的重大威胁,估计 2022 年将影响 1060 万人。耐多药和广泛耐药菌株的出现迫使人们开发新型有效药物。加快确定这些药物的作用机制 (MOA) 对于推进结核病治疗至关重要。本研究介绍了 MycoBCP,这是针对结核分枝杆菌量身定制的独特细菌细胞学分析 (BCP),利用 BCP 中的卷积神经网络 (CNN) 来克服传统图像分析技术带来的挑战。使用 MycoBCP,我们分析了各种抗菌化合物对结核分枝杆菌的形态学影响,捕捉广泛的模式而不是依赖精确的细胞分割。这种方法避免了结核分枝杆菌中普遍存在的细胞聚集和染色不均匀等问题。在盲测中,MycoBCP 准确识别了 96% 化合物的作用机理,只有一次错误分类,即利福布汀,它被错误地归类为影响翻译而不是转录。转录和翻译抑制产生的相似形态表明需要进一步改进以更有效地区分它们。将 MycoBCP 应用于一系列抗结核药物,成功识别了已知的作用机理并揭示了独特的作用,证明了其在早期药物发现和开发中的实用性。我们的研究结果强调了基于 CNN 的 BCP 在提高作用机理测定的准确性和效率方面的潜力,特别是对于结核分枝杆菌等具有挑战性的病原体。MycoBCP 代表了结核病药物开发的重大进步,为高通量筛选抗菌化合物提供了一种强大且适应性强的方法。
附加声明:已报告存在竞争利益。AKV、RQK、MHL、SW、NV、AB 没有竞争利益。DL、CAP、JMB、RJC 和 JW 是 Janssen(强生公司)的全职员工和/或强生公司的潜在股东。JG、CV 和 DAL 已被列为 JNJ-2901 专利申请的发明人。
FADV或家禽腺病毒属于Adenoviridae家族和鸟类腺病毒属(Schachner等,2018; Wang and Zhao,2019)。通过跨中和限制酶测定,禽腺病毒已分为五种物种:a,b,c,d和e,总共包含12种血清型(Hess,2000)。值得注意的是,FADV-1诱导的腺病毒腐蚀侵蚀(年龄)以巨型损伤为特征,包括侵蚀性的gizz虫,包括炎症和溃疡; FADV-4与心包症状肝炎综合征(HHS)有关; FADV-8导致鸡的包容体肝炎(IBH)(MO,2021)。该疾病主要通过粪便 - 口径途径水平扩散,尽管一些研究表明也可能发生垂直传播。在中国,HHS案件在2015年之前是零星的;然而,自2015年7月以来,该疾病急剧激增,包括重石,hebei,Hebei,Guangdong,Shandong,Jiangsu,Jiangsu,Hubei,Liaoning,Sichuan,Sichuan和Zhejiang在内的多个省份出现了报道, 2019;在中国,FADV-4已成为腺病毒感染率最高的血清型。
ElenaFernándezTorres摘要结核病(TB)仍然是全球重大的健康挑战,由于多药耐药性结核分枝杆菌(MTB)的兴起而加剧。由于抗性机制而导致的现有药物的效率低下需要新颖的药物靶标和优化的药物输送系统。这项研究旨在使用CRISPR干扰(CRISPRI)筛查确定MTB中的必要药物靶标,并评估基于微晶纤维素(MCC)的配方效应以持续药物递送。使用DCAS9介导的转录抑制构建了一个基因组 - 宽CRISPRI文库,并使用qPCR和RNA测序(RNA-Seq)评估了基因敲低效率。使用肉汤稀释测定法和菌落形成单位(CFU)枚举评估了基因抑制对细菌存活和药物敏感性的影响。基于MCC的Isoniazid制剂是使用湿的颗粒方法开发的,并通过扫描电子显微镜(SEM),X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)来表征。使用USP溶解设备II评估了体外药物释放曲线,并进行了统计分析,包括ANOVA和Pearson相关性,以确定重要的趋势。结果表明,高CRISPRI敲低效率与降低的细菌存活率相关(r = -0.78,p <0.0001),表明成功鉴定了基本基因。细菌存活与利福平MIC之间的正相关(r = 0.61)证实,敲低会影响药物敏感性。基于MCC的制剂显示在24小时内持续释放药物,在MCC药物释放和细菌存活之间存在很强的负相关(-0.68),证实了延长的抗菌活性。该研究得出结论,CRISPRI是结核病药物靶标识别的有力工具,而基于MCC的配方为持续药物递送提供了有希望的策略。未来的研究应在体内药代动力学,全基因组测序和先进的药物携带者中整合,以进一步优化结核病治疗策略。关键字:结核病,CRISPR干扰,结核分枝杆菌,基因敲低,细菌存活,微晶纤维素,耐药性,持续药物释放,药物释放,精确药物,精密医学引起的结核病(TB),由Mycobacterium witter(Mimabacterium witter)造成了1.超过100个全球的造成(Mimobacterium witter and Fresprim andim Million Millionb)(Mim Million Millionb),是一个1. Mimb)。每年死亡(Samukawa等,2022)[1]。耐多药(MDR-TB)和广泛的耐药性结核(XDR-TB)的出现增加了对新型治疗策略的迫切需求(Cheung等,2021)[3]。传统的药物发现方法由于细菌代谢,休眠机制和内在耐药性的复杂性而难以确定新的有效靶标(Rock等,2016)[2]。在响应中,CRISPR干扰(CRISPRI)技术已成为鉴定和验证细菌生存,耐药性和代谢脆弱性所需基因基因的革命性工具(Yan等,2022)4 []。CRISPRI利用催化死亡的CAS9(DCAS9)酶选择性地抑制基因表达而无需诱导双链断裂,从而在活细菌细胞中实现了高通量药物靶标筛查(McNeil等人,2021年)[3]。虽然CRISPRI已广泛用于癌症研究和细菌遗传学,但通过鉴定出新的可药物靶标和抗生素协同作用来增强结核病药物发现的潜力仍未得到充分激发(Choudhery等,2024)[5]。除了确定新药靶标外,改善药物输送系统对于增强治疗功效和患者依从性至关重要(Kalita等,2013)[6]。当前的结核病药物治疗方案很长(6-9个月),导致辍学率高,治疗不完全,
引言世界卫生组织 (WHO) 估计,2023 年全球将有 1080 万人患上结核病 (TB),120 万人死于该疾病 [1]。药物敏感 (DS) 结核病需要 4 至 6 个月的标准化联合疗法 [2]。对于对利福平和异烟肼产生耐药性的结核病(定义为耐多药 (MDR) 结核病)或单独对利福平耐药的结核病(RR-TB),目前建议大多数受影响患者采用 6 个月的二线抗结核药物联合疗法 [3,4]。无论结核分枝杆菌是否对药物产生耐药性,都应对治疗效果进行监测以确保充分的治疗反应,并评估患者对接触者的传染性 [5,6]。
引言世界卫生组织 (WHO) 估计,2023 年全球将有 1080 万人患上结核病 (TB),120 万人死于该疾病 [1]。药物敏感 (DS) 结核病需要 4 至 6 个月的标准化联合疗法 [2]。对于对利福平和异烟肼产生耐药性的结核病(定义为耐多药 (MDR) 结核病)或单独对利福平产生耐药性的结核病(RR-TB),目前建议大多数患者采用 6 个月的二线抗结核药物联合疗法 [3,4]。无论结核分枝杆菌是否对药物产生耐药性,都应监测治疗效果,以确保充分的治疗反应,并评估患者对接触者的传染性 [5,6]。