克里斯·蒂普森:首先我要说的是,任何物理学都是奇怪的。量子力学就是这样,更重要的是,它之所以如此,是因为它不仅混淆了我们通常认为的世界真相(考虑到我们对周围中等大小物体的常识理解),而且事物属性的组合方式不符合经典逻辑。因此,我们有一个著名的量子叠加概念。经典物理学中也有叠加的概念。例如,当一个人拨动吉他弦时,就会产生不同频率和不同谐波的叠加,从数学上讲,就是将这些不同的状态相加,以创建一个新的允许状态。但在量子力学中,情况有所不同,因为我们在非经典属性结构的背景下进行了叠加。
免疫治疗被广泛认为是一种很有前途的癌症治疗方法,但肿瘤微环境(TME)的免疫效应相抑制和免疫相关不良事件的产生限制了它的应用。研究表明,声动力疗法(SDT)能在杀死肿瘤细胞的同时有效激活抗肿瘤免疫。SDT产生肿瘤的细胞毒物质,然后在超声作用下选择性激活声敏剂,导致细胞凋亡和免疫原性死亡。近年来,各种SDT单独使用以及SDT与其他疗法联合使用被开发来诱导免疫原性细胞死亡(ICD)和增强免疫治疗。本文综述了近年来SDT与纳米技术的研究进展,包括单独使用SDT的策略、基于SDT的协同诱导抗肿瘤免疫的策略以及基于SDT的多模态免疫治疗的免疫疗法。最后讨论了这些基于SDT的疗法在癌症免疫治疗中的前景与挑战。
量子信息挑战研究所 (CIQC) 是美国国家科学基金会根据《国家量子倡议法案》 (NQI) 建立的五个量子飞跃挑战研究所 (QLCI) 之一。按照 NQI 的设想,CIQC 是一个学术机构,以研究型大学网络为基础。我们开展量子信息科学和工程方面的前沿研究,旨在推动量子计算机科学的发展,利用量子信息科学理解自然现象,开发量子信息科学的新平台和应用。CIQC 支持本科生、研究生、博士后研究员和教职研究员组成的社区。我们创建了开放论坛,例如校园级聚会、科学研讨会、研究生学校、理论量子计算机科学在线研讨会以及为期数周的计算机科学和数学研究驻留计划。我们的社区和我们赞助的活动面向整个教育和研究界,不分国籍。反过来,这些活动也吸引了一些最优秀的科学家,包括正在接受培训的科学家和成熟的科学家,来到我们的研究所和我们所在的大学。
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
第二次量子革命不仅促进了量子科学和技术的研究,也促进了如何最好地教育可能进入这一新兴领域的学生的研究。关于量子科学教育的大部分讨论都集中在学生的概念学习或潜在雇主所期望的技能上;缺乏对实验课程和实验如何促进本科量子教育的研究。为了开始了解量子实验可能发挥的作用,我们对在本科实验课程中使用单光子和纠缠光子进行实验的教师进行了调查,发现最重要的学习目标之一是“在现实生活中看到量子力学”。为了更好地理解这一目标,我们采访了 15 位接受调查的教师,询问他们了解量子力学对他们意味着什么,以及他们为什么认为这是学生教育的重要组成部分。我们从对这些访谈的定性编码分析中提出了新主题,这些主题开始阐明教师如何看待了解量子力学,以及教师希望了解量子力学(以及更广泛地进行量子实验)将帮助学生实现哪些学习目标。
在本文中,我们研究了新哥本哈根(或“认识论实用主义”)对量子力学的主要解释之间的相似之处和差异,这些解释在这里被定义为拒绝量子态的本体论性质并同时避免隐藏变量,同时保持量子形式不变。我们认为,存在一个具有共同核心的单一通用解释框架,所有这些解释都致力于这个框架,因此它们可以被视为它的不同实例,其中一些差异主要是重点和程度的问题。然而,我们也发现了更实质性的剩余差异,并对它们进行了初步分析。我们还认为,这些剩余的差异无法在量子力学本身的形式主义中得到解决,并确定了可用于打破这种解释不确定性的更普遍的哲学考虑。
摘要:量子点(QD)是一种纳米粒子,在许多科学领域都显示出良好的应用前景。QD 是一种具有独特量子力学性质的纳米级半导体粒子。这些微小结构的直径通常为 1 至 10 纳米,由于其尺寸相关的量子限制效应,表现出独特的电子和光学行为。它们的应用可以提高 LED、电池、催化剂、太阳能等的质量、能耗和效率。这篇评论文章首先介绍了纳米化学的基础知识,然后更深入地介绍了量子点的合成过程,并深入研究了当今的各种应用。本文的重点是向量子点领域的新学者介绍量子化学的基础知识,然后阐述量子点给许多领域带来的改进。本文的深度足以理解这些应用背后的大多数概念,但总的来说,这个领域仍然相对较新,在这种情况下可以找到量子点的新应用和改进。未来,量子点可能成为推动社会进步的关键,除了量子点已经在这些领域取得的进步之外,还可能应用于药物处理、更高效的能源存储、更好的能源产生和量子计算。1.简介:
在过去的十年中,高通量测序技术的进步导致了我们对微生物群在人类疾病(尤其是在肿瘤学中)的作用的理解。尽管肿瘤内微生物群的生物量较低,但它仍然是肿瘤免疫微环境的关键组成部分,在不同的肿瘤组织和个体患者中表现出显着的异质性。尽管免疫疗法已经出现了治疗肿瘤的主要策略,但患者对这些治疗的反应差异很大。越来越多的证据表明,肿瘤内菌群与免疫系统之间的相互作用可以调节宿主肿瘤免疫反应,从而影响免疫疗法的有效性。因此,对肿瘤内微生物群如何形成并调节肿瘤免疫微环境是至关重要的。在这里,我们总结了肿瘤内菌群在癌症免疫中的作用的最新进步,探讨了免疫功能受到肠内肿瘤内外肠内微生物群影响的潜在机制。我们还讨论了肿瘤内微生物群对癌症免疫疗法及其临床应用的反应的影响,从而强调了该领域的未来研究方向和挑战。我们预计,在本综述中提供的癌症免疫与肿瘤内微生物群之间的相互作用的宝贵见解将促进基于微生物群的肿瘤疗法的发展。
“LIGO/Virgo 式”网络与合作,为英国领导层提供了一条道路。第一阶段目前由 QTFP 计划和其他来源资助了约 1000 万英镑,第二阶段可以放在 Boulby 或 Daresbury(英国)的国家设施,也可能放在 CERN(法国/瑞士)。