Taubert的1.2 |恩格尔·巴斯蒂安1.2 | Dieldelhorst Jana 1.2 | Katharina L. Hupa-Breton 1.2 |帕特里克·贝伦特(Patrick Behrendt)1.2.3.4 | Niklas T.篮子5 | Kurt-WolframSühs6 | Macel K. Janik 2.7 | Zachou Callopy 8.9 |武术sebode 2.10 |克里斯托弗示意图2.10.11 |玛丽亚 - 卡洛特(Maria-Carlot)2.12 | Sarah Habes 13 |英国 - 艾希联盟| Ye H. OO 2:14.15 | Lalanne 16 Lalanne | Simon Pape 2.17 | Schubert Maen 18 |迈克尔·赫斯特18 | StefanDübel18 | Mario Thevis 19 | Danny Jonik 20 | Julia Beimdici 21 | Falk F. R. P. H. Drive 2.17 | Muratour 16 | David H. Adams 2:14.15 |杰西卡·戴森(Jessica K. Dyson)22.23 | Amedee Renand 24 | Isabel Graupara 2.12 | Ansgar W. Lohse 2.10 |乔治·N·送货8.9 | Milkiewicz出生2.7.25 |马丁·斯坦格6 |本杰明1.2 | Witte 5 | Heiner Wedemeyer 1.2 |迈克尔·P·曼斯1.2 | Elmar Jaeckel 1.2.26Taubert的1.2 |恩格尔·巴斯蒂安1.2 | Dieldelhorst Jana 1.2 | Katharina L. Hupa-Breton 1.2 |帕特里克·贝伦特(Patrick Behrendt)1.2.3.4 | Niklas T.篮子5 | Kurt-WolframSühs6 | Macel K. Janik 2.7 | Zachou Callopy 8.9 |武术sebode 2.10 |克里斯托弗示意图2.10.11 |玛丽亚 - 卡洛特(Maria-Carlot)2.12 | Sarah Habes 13 |英国 - 艾希联盟| Ye H. OO 2:14.15 | Lalanne 16 Lalanne | Simon Pape 2.17 | Schubert Maen 18 |迈克尔·赫斯特18 | StefanDübel18 | Mario Thevis 19 | Danny Jonik 20 | Julia Beimdici 21 | Falk F. R. P. H. Drive 2.17 | Muratour 16 | David H. Adams 2:14.15 |杰西卡·戴森(Jessica K. Dyson)22.23 | Amedee Renand 24 | Isabel Graupara 2.12 | Ansgar W. Lohse 2.10 |乔治·N·送货8.9 | Milkiewicz出生2.7.25 |马丁·斯坦格6 |本杰明1.2 | Witte 5 | Heiner Wedemeyer 1.2 |迈克尔·P·曼斯1.2 | Elmar Jaeckel 1.2.26
用于量子计算的极化立方体板置量非常适合用于捕获的离子,线性光学和中性原子量子计算和量子加密应用。这些梁插座可在跨紫外线到NIR光谱的一系列常用,特定的波长中获得,并提供> 99.5%的S偏置光的反射,P极高的光的传输> 96%。具有紧凑的12.7毫米立方体结构,可以轻松地集成到台式应用程序或OEM设备中。用于量子计算的极化立方体板块具有熔融二氧化硅底物,具有低温敏感性,并在设计波长下进行AR涂层以最大程度地传输,以确保使用低光信号的最佳性能。这些梁插座具有精度直角棱镜,以确保λ/6表面平坦度和20-10的表面质量。
参考文献[1] V. Vedia,H。Mach,L。Fraile,J。Udías,S。Lalkovski,物理学中的核仪器和方法A:加速器,光谱仪,探测器和相关设备795,144(2015)。doi https://doi.org/10.1016/j.nima.2015.05.058。URL https://www.sciencectirect.com/science/article/pii/s0168900215007172 [2] V. V. V. V. V. V. V. V. V. V. V. V. V. V. (2017)。doi https://doi.org/10.1016/j.nima.2017.03.030。 URL https://www.sciendirect.com/science/article/pii/s0168900217303704 [3] 463,394(2020)。 doi https://doi.org/10.1016/j.nimb.2019.04.044。 URL https://www.sciencecret.com/science/article/pii/s0168583x19302289 [4] E. Picado,M。Carmona-Gallardo,J。Calmona-Gallardo,J。Cal-González,J。Cal-González,L。Fraile,L。Frail,L。Frail,H。Mach,H。Mach,H。Mach,H。Mach,J.Udíad,V。V. v. v. vedia,71(2012)。 doi https://doi.org/10.1016/j.apradiso.2016.11.017。 URL https://www.sciendirect.com/science/article/pii/s09 [5] (2013)。 doi https://doi.org/10.1016/j.nima.2012.11.009。 URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。doi https://doi.org/10.1016/j.nima.2017.03.030。URL https://www.sciendirect.com/science/article/pii/s0168900217303704 [3] 463,394(2020)。doi https://doi.org/10.1016/j.nimb.2019.04.044。URL https://www.sciencecret.com/science/article/pii/s0168583x19302289 [4] E. Picado,M。Carmona-Gallardo,J。Calmona-Gallardo,J。Cal-González,J。Cal-González,L。Fraile,L。Frail,L。Frail,H。Mach,H。Mach,H。Mach,H。Mach,J.Udíad,V。V. v. v. vedia,71(2012)。doi https://doi.org/10.1016/j.apradiso.2016.11.017。URL https://www.sciendirect.com/science/article/pii/s09 [5] (2013)。doi https://doi.org/10.1016/j.nima.2012.11.009。 URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。doi https://doi.org/10.1016/j.nima.2012.11.009。URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。hamamatsu光子系统R9779数据表。URL https://www.digchip.com/datasheets/parts/datasheet/190/r9779-pdf.phpURL https://www.digchip.com/datasheets/parts/datasheet/190/r9779-pdf.php
一家学校理工学院,加拿大蒙特利尔b实验室C查尔斯·库仑(Charles Colomb) INP,CNRS,Univers de Toulouse,118 De Narbonne,31062 Toulouse,Cedex 9,法国H Karlsruhe技术研究所(KIT) 法国。 e-mail: etienne.gaufres@cnrs.fr k Humboldt-universita zu Berlin, Germany L Lumin, Universite Ét Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France M University of Montreal, Canada N University of Vienna, Austria o University of Paris, Ecole Normale Paris, PSL, PSL, Free University of德国柏林,Q工程和信息学系,意大利佩加索大学,意大利的佩加索大学。 请参阅do:https://doi.org/10.1039/d3cs00467h一家学校理工学院,加拿大蒙特利尔b实验室C查尔斯·库仑(Charles Colomb) INP,CNRS,Univers de Toulouse,118 De Narbonne,31062 Toulouse,Cedex 9,法国H Karlsruhe技术研究所(KIT) 法国。e-mail: etienne.gaufres@cnrs.fr k Humboldt-universita zu Berlin, Germany L Lumin, Universite Ét Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France M University of Montreal, Canada N University of Vienna, Austria o University of Paris, Ecole Normale Paris, PSL, PSL, Free University of德国柏林,Q工程和信息学系,意大利佩加索大学,意大利的佩加索大学。请参阅do:https://doi.org/10.1039/d3cs00467h
本文介绍了一种利用烟囱废气加热水的热回收系统 (HRS)。本文通过实验手段对 Khaled 等人提出的一种名为“多管罐”的废热回收系统进行了优化。文中详细描述了该系统的设计,并进行了组装和测试。为了研究改变头部形状对系统性能的影响,本文构建了两个不同的头部:一个圆柱形 (Cyl) 和一个锥形 (Con)。结果表明,锥形头部 (ConH) 的性能优于圆柱形头部 (CylH)。具体来说,在 275 分钟内,CylH 系统可将水温升高到最高 59 ◦ C,而 ConH 系统可将水温升高到 68 ◦ C。此外,在 400 分钟内,ConH 系统可将水温升高到 80 ◦ C。此外,经济和环境分析表明,当系统每月使用 140 次,每次 275 分钟时,ConH 系统可比 CylH 系统每月节省约 16 美元。此外,ConH 系统的投资回收期约为 CylH 系统的一半(6 个月)。最后,当系统每月使用 140 次时,ConH 系统可比 CylH 系统每年减少 2 吨二氧化碳排放。
在外太空中有超过21000个对象,并暴露于苛刻的空间环境中。空间对象的大小有很大变化。我们的研究集中于小型卫星,例如立方体,这些卫星必须尊重时间,空间和能量限制。为了解决此问题,本文介绍并评估了两个容忍在线调度算法算法:算法将所有任务安排为Aperiodic(称为OneOff),而将到达任务放置为Aperiodic或Quartiac ofic odic或周期性任务(称为Oneoff&Cyclic)。基于几种情况,结果表明,订购策略的性能受到系统负载的影响以及与要执行的所有任务的简单和双重任务的比例。“最早的截止日期”和“最早到达时间”为Oneoff的订购政策,或“最小懈怠”订购策略,用于单一和周期性,拒绝所有测试的场景中最小任务。本文还介绍了评估订购策略实时性能的计划时间的分析,并表明Oneoff比OneOff&Cyclic所需的时间更少。最后,发现所研究的算法在恶劣的环境中的性能也很好,并提供与基于三重模块化冗余的系统相同的可靠性水平,系统功耗较少。
钙钛矿纳米晶体(NC)(例如用于量子应用的CSPBBR 3)的兴趣正在迅速提高,因为已经证明它们可以表现为非常有效的单个光子发射器。在这种情况下要解决的主要问题是它们在操作激发下的光稳定性。在本文中,我们对高度有效的钙钛矿纳米纸的光学和量子性质进行了完整分析,该纳米蛋白含有已建立的方法,该方法是第一次生产量子发射的方法,并证明可确保增加光合稳定性。这些发射器与强烈的光子抗挑战一起表现出减少的眨眼。非常明显的是,这些特征几乎不会被激发强度的增加远高于发射饱和水平。最后,我们第一次实现了单个钙钛矿纳米管与锥形操作的纳米纤维的耦合,以旨在实现紧凑的集成单光子源以实现未来的影响。
多(MDR),广泛(XDR),极度(XXDR)和总(TDR)耐药性结核分枝杆菌(M. tubercolcolcosis)菌株被认为是潜在的全球流行威胁,需要需要开发新的结核病(TB)预防和治疗策略。大麻结核病在感染和逃避宿主免疫系统中的效力部分是由于其独特而动态的细胞包膜,主要由脂质和碳水化合物组成。动态细胞包膜会改变以响应局部环境因素来适应不同的肺微环境,并且由于其低渗透性而保护病原体免受恶劣环境和许多抗菌药物的保护。因此,抗TB剂的大多数组合处理靶向分枝杆菌细胞包膜。对药物敏感的结核病的标准临床治疗包括服用四种一线药物6个月(2个月的Isoniazid,Rifampicin,Ethambutol和吡嗪酰胺进行了2个月,其次是4个月的异尼氏酶和利福平),成功率为85%(WHO,2019年)。然而,近年来,全球抗药性菌株的出现,尤其是在结核病地区,构成了全球威胁。[1]