研究孔隙率的方法:用DED制造的体积的孔隙率的分析是通过削减的削减量,斐济软件上的sšppuant进行的:ů2D死于灰度水平显微镜(ągure 2(a))(ągure2(a)(ągure2(a)),每个pixel varying gray with 0(black)和255(白色)和255(白色)和255(白色);;图像不再仅包含两个值,0和255。孔的形式为黑色像素,如ągure 2(b); segmation and spied Analysis。此步骤是在矩阵(材料)中自动检测零件(毛孔),通过扫描所有相同的值像素,具有一定的精度,取决于阈值阶段(ągures 2(c)和(d));
SuperDuplexStainlessStainlessSteelShavEseen增加了InpastDecades的侵害,使得Quireboth具有出色的机械性能和耐腐蚀性。双链钢的特性在很大程度上取决于它们的热史,这可以产生各种奥氏体与铁素铁岩的比率;而最佳特性通常需要接近50-50的铁氧体 - 奥斯特式复式微观结构。添加剂制造过程涉及大型热梯度,因为新材料在已经印刷的材料的顶部融化了,而热历史记录取决于过程参数。由于平衡相比值在很大程度上取决于温度,因此结果是报告的相比范围很广,从奥氏体的可忽略不计到大于60%。因此,重要的是要理解和预测相比如何取决于过程参数。我们使用激光金属粉末定向能量沉积(LMPDED)添加剂制造技术评估使用恒定过程参数的SAF 2507 SAF 2507 SAF 2507超级不锈钢的微观结构。印刷后的微结构分析揭示了奥氏体相位分数的梯度,这是距构建平台距离的函数。此数据揭示了在制造过程中铁氧体对奥斯丁岩的热历史与固固相变之间的关系。壁中每个位置的热历史是通过先前的快速数值模拟(在此贡献中得到改善)建模的,并且已经开发了基于半分析方法的快速消化控制的固相变相变模型。相比的数值结果与实验观察合理一致。 提出的模拟策略很快就可以调整过程参数,以实现相比的目标分布,以促进超级双层不锈钢的添加剂制造,并且已经提出了基于此基础的构建平台的温度控制策略,以达到几乎均匀的均匀的50-50相比率。相比的数值结果与实验观察合理一致。提出的模拟策略很快就可以调整过程参数,以实现相比的目标分布,以促进超级双层不锈钢的添加剂制造,并且已经提出了基于此基础的构建平台的温度控制策略,以达到几乎均匀的均匀的50-50相比率。
1:柏林夏里特医学院病毒学研究所,柏林自由大学、柏林洪堡大学和柏林健康研究所的企业成员,德国柏林 10117。 2:德国感染研究中心(DZIF),合作站点 Charité,德国柏林 10117。 3:英国剑桥大学动物学系病原体进化中心,唐宁街,剑桥,CB2 3EJ,4:Vivantes Auguste-Victoria-Klinikum 内科系 - 传染病,Rubensstr。 125, 12157,柏林,德国 5:柏林夏里特医学院传染病和呼吸医学系,柏林自由大学、柏林洪堡大学和柏林健康研究所的企业成员,13353,柏林,德国。 6:德国柏林夏里特医学院皮肤病学、性病学和过敏症系循证医学分部(dEBM),柏林自由大学、柏林洪堡大学和柏林卫生研究所的企业成员 7:柏林劳动医学中心 - Charité Vivantes GmbH,德国柏林 13353。
清理WorldCat中的重复记录是我们可以采取的最有影响力的措施之一,以提高WorldCat的质量并改善图书馆及其用户的体验,这是我们合作努力保持准确和有用数据的关键组成部分。虽然OCLC专家和图书馆社区的成员最适合从事这项工作,但我们知道,使用人类将其扩展到整个世界猫,这根本不是一个可行或可持续的解决方案。因此,我们已经开发了一个AI机器学习模型,以识别WorldCat中的重复记录。那是您进来的地方。我们需要您验证和增强模型对重复记录的理解以扩展工作,从而最终提高了整个合作社和图书馆社区的WorldCat质量。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
量子纠缠态的控制和操纵对于量子技术的发展至关重要。一种有前途的途径是通过它们的光学偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。在这里,我们实施高光谱成像来识别耦合的二苯并蒽分子对,并通过使用斯塔克效应调整分子光学共振来找到最大纠缠的超辐射和亚辐射电子态的独特光谱特征。我们展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。耦合分子的光学纳米显微镜揭示了由其激发路径中的量子干扰引起的空间特征,并揭示了每个发射器的位置。受控电子态叠加将有助于破译由相干耦合控制的更复杂的物理或生物机制并开发量子信息方案。
控制和操纵量子纠缠非局域态是量子信息处理发展的关键一步。实现这种状态的一种有希望的大规模途径是通过相干偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。通过实施高光谱成像来识别困在低温基质中的耦合有机分子对,我们通过斯塔克效应调节量子发射器的光学共振,获得了最大分子纠缠的独特光谱特征。我们还展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。有趣的是,纠缠分子的光学纳米显微镜图像揭示了由其激发路径中的量子干涉产生的新空间特征,并揭示了每个量子发射器的确切位置。受控分子纠缠可以作为试验台,以解释由相干耦合控制的更复杂的物理或生物机制,并为实现新的量子信息处理平台铺平道路。
背景:出院后的手术恢复通常给患者和看护人带来挑战。术后并发症和在家管理不良的疼痛可能会导致对急诊科(ED)的意外访问和去医院的再入院。数字家庭监控(DHM)可以改善术后护理。目的:与标准护理相比,我们进行了一项随机对照试验(RCT)的可行性研究,以评估胸外科手术后的DHM有效性。方法:我们在单个三级护理中心进行了2臂平行组飞行员RCT。接受胸腔手术程序的成年患者被随机分为2组:DHM组和护理标准(对照组)。我们遵守了意向性治疗分析原则。主要结果是预先确定的RCT可行性标准。如果超过75%的试验募集,协议依从性和数据收集,则该试验将是可行的。次要结果包括30天的ED访问率,30天的再入院率,术后并发症,住院时间长度,30天阿片类药物消费量,30天的恢复质量,患者培训质量满意度,照料者满意度,医疗保健提供者满意度以及每例案例成本。结果:满足所有RCT可行性标准。试验招聘率为87.9%(95%CI 79.4%-93.8%)。协议依从性和结果数据收集率分别为96.3%(95%CI 89.4%-99.2%)和98.7%(95%CI 92.9%-99.9%)。总共有80名患者被随机分配,DHM组为40例(50%),对照组40例(50%)。基线患者和临床特征在两组之间是可比的。The DHM group had fewer unplanned ED visits (2.7% vs 20.5%; P =.02), fewer unplanned admission rates (0% vs 7.6%; P =.24), lower rates of postoperative complications (20% vs 47.5%, P =.01) shorter hospital stays (4.0 vs 6.9 days; P =.05), but more opioid consumption (111.6,SD 110.9)vs 74.3,SD 71.9 mg吗啡等效物;与对照组相比,p = .08)。DHM also resulted in shorter ED visit times (130, SD 0 vs 1048, SD 1093 minutes; P =.48) and lower cost per case (CAD $12,145 [US $ 8436.34], SD CAD $8779 [US $ 6098.20] vs CAD $17,247 [US $11,980.37], SD
非整倍性通常对细胞存活和生长构成挑战。然而,最近的研究发现了异倍性对某些调节基因突变的细胞有益的例外。我们的研究表明,缺乏纺锤体检查点基因BUB3的细胞表现出精选染色体的非整倍性。与野生型细胞相比,BUB3和BUB1的主轴检查点并不是萌芽的酵母,但BUB3和BUB1的损失增加了Chro Mosome错误分析的可能性。与普遍的假设相反,即由于生长缺陷,非整倍性细胞将胜任,我们的发现表明,bub3δ细胞在许多世代中始终保持特定染色体的脑倍倍倍。我们研究了这些额外的Chromo躯体在BUB3δ细胞中的持久性是由某些基因的有益表达升高而导致的,还是仅仅是耐受性。我们确定了涉及染色体分离和细胞周期调节的几个基因,这些基因赋予了对Bub3缺乏细胞的优势。总的来说,我们的结果表明,特定基因通过非整倍性的增益可能为染色体隔离保真度较差的菌株提供生存优势。
摘要纳米技术已经改变了工业腐蚀的限制,提供了增强治疗结果的机会,同时最大程度地减少了不良影响。这项研究的重点是氨基和墨托型耦合剂的组合,以制造含硫的聚合物聚合物涂层的钴铁液纳米纳米粒子,以作为抗腐蚀的潜在应用。在这项研究工作中,两种类型的聚合物有限岩纳米复合材料由组成的单体组成,该单体由一个组成的单体组成,其中无机纳米颗粒核通过包含上述单体共聚物在分子的一端组成的共聚物的层覆盖。两个系统(包括基于卵磷脂表面活性剂的微乳液系统和游离卵磷脂乳液系统)分别用于合成纳米复合材料,并分别将其标记为PF-A和PF-B。用X射线衍射(XRD)和动态光散射(DLS)分析表征准备好的样品。制备的PF-A纳米复合材料提供了一种形成的膜,在金属表面上具有出色的抗腐烂特性而无需产生污泥,而不使用磷或铬在1.0 m HCl溶液中与PF-B相比,在1.0 m HCl溶液中,最大最大腐蚀抑制效率为1.5 wt。基于纳米量的1.5 wt。基于纳米体重的量度(MG/CMG/cmg/cmg/cmg)。研究了操作参数,例如温度和抑制剂浓度。用原子力显微镜(AFM)证实了在钢表面形成的膜表面形成的膜,所获得的结果揭示了彼此紧凑和对齐的球状纳米球,形成了针对腐蚀性环境的抗腐蚀屏蔽单层。AFM图像验证了钢板表面上的膜形成,并且由于胺和默西托托类型的耦合剂的独特组合具有协同作用,因此两种样品的抗腐蚀抑制作用的实验发现与对照样品相比。