对称的正定定义(SPD)矩阵渗透到许多科学学科,包括机器学习,优化和信号处理。配备了Riemannian的几何形状,SPD矩阵的空间受到了引人注目的特性及其所使用的riemannian Means,现在是某些应用中的金标准,例如脑部计算机界面(BCI)。本文解决了平均变量缺失的协方差矩阵的问题。这种情况通常发生在廉价或不可靠的传感器中,或者当伪影抑制技术删除导致等级矩阵的损坏的传感器时,阻碍了基于协方差的方法中Riemannian几何形状的使用。一种替代但可疑的方法包括删除缺少变量的矩阵,从而降低了训练集的大小。我们解决了这些局限性,并提出了一种基于大地凸的新配方。我们的方法在生成的数据集上进行了评估,这些数据集具有受控数量的丢失变量和已知基线,证明了所提出的估计器的鲁棒性。在实际BCI数据集上评估了这种方法的实际利益。我们的结果表明,所提出的平均值比经典数据插补方法更适合分类。关键字:SPD矩阵,平均值,缺少数据,数据插补。
摘要。基于清晰收获,现场制备,播种和中间稀疏的旋转林业通常是Fennoscan-dia的主要管理方法。然而,清除切割后对温室气体(GHG)排放的理解仍然有限,特别是在排水的泥炭地森林中。在这项研究中,我们报告了二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)的基于涡流的(基于EC的)净排放,该释放的北谷植物林中的肥沃盐水收获后1年1年。我们的结果表明,在年度上,该站点是净CO 2来源。CO 2排放主导着年度温室气体余额(23.3 T CO 2等式ha -1 yr -1,22.4-24.1 t co 2 eq。ha-1 yr-1,取决于EC间隙填充方法;总计82.0%),而n 2 o的作用(5.0 t co 2 eq。ha -1 yr -1,4.9-5.1 t co 2 eq。ha -1 yr -1; 17.6%)也很重要。该站点是一个弱的CH 4来源(0.1 T CO 2 eq。ha -1 yr -1,0.1-0.1 t co 2 eq。ha -1 yr -1; 0.4%)。开发了一个统计模型,以估计表面型CH 4和N 2 O排放。该模型基于空气温度,土壤水分和Ec ec ec ec toper toper typer的贡献。使用未占用的飞机(UAV)光谱成像和机器学习对表面类型进行了分类。我们的研究提供了有关CH 4和N 2 o频道如何受到基于表面上的模型,表面型特异性最高的CH 4散发出现在植物覆盖的沟渠和裸露的泥炭中,而表面则以活树,死木,垃圾,垃圾,暴露的泥炭为主导,是N 2 O发射的主要贡献者。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
Junhao Wen,Ilya M Nasrallah,Ahmed Abdulkadir,Theodore D Satterthwaite,Zhijian Yang等。基因组基因座影响人脑结构协方差的模式。美国科学学院的会议记录,2023,120(52),10.1073/pnas.2300842120。hal-04362321
Zhiqiang Sha 1✉2,Evdocia anagnosou 3,Celso Bolte 4,Guillaume Auzias 5,Marlene Behramann 12,13,Calvo 14,Calvo 14,Eileen Daly 15,Eileen Daly 15,Deneuth 5,Deneuth 5,Deneuth 5,Meiyu duan Duan Duan Duan Duan Duan Duan Duan Duan Duan Duan Duan Duan duan fitz in 31,Sarah Duris fitea forrise florothe l. jac selle l. Maria Jalbrzikowski 22,Joost Janssen 4,Joseph A.国王20 King 20,Luna 22,Sarah E. Medland 32,Filippo Muratori 12.13,Bob Orange 17,Parellada 4,Joseph C J. Taylor 40,Gregory L. Wallace 41,Jan K.King 20,Luna 22,Sarah E. Medland 32,Filippo Muratori 12.13,Bob Orange 17,Parellada 4,Joseph C J. Taylor 40,Gregory L. Wallace 41,Jan K.
大脑计算机界面域中使用的抽象脑电图数据通常具有低于标准的信噪比,并且数据采集很昂贵。有效且常用的分类器来区分事件相关电位是线性判别分析,但是,它需要对特征分布进行估计。虽然功能协方差矩阵提供了此信息,但其大量的免费参数要求使用正规化方法,例如Ledoit -Wolf收缩。假设与事件相关的潜在记录的噪声没有时间锁定,我们建议将与事件相关潜在数据的协方差矩阵分离,以进一步改善线性歧视分析的协方差矩阵的估计值。我们比较了三种正则变体和基于黎曼几何形状的特征表示,与我们提出的新型线性判别分析与时间耦合的协方差估计值进行了比较。对14个脑电图数据集的广泛评估表明,新颖的方法可将分类性能提高到小型训练数据集的最高四个百分点,并优雅地收敛于标准收缩率调查的LDA对大型培训数据集的性能。鉴于这些结果,该领域的从业人员应考虑使用线性判别分析来对事件相关的电位进行分类时,应考虑使用我们提出的时间耦合协方差估计,尤其是在很少有培训数据点可用时。
对称的正定定义(SPD)矩阵渗透到许多科学学科,包括机器学习,优化和信号处理。配备了Riemannian的几何形状,SPD矩阵的空间受到了引人注目的特性及其所使用的riemannian Means,现在是某些应用中的金标准,例如脑部计算机界面(BCI)。本文解决了平均变量缺失的协方差矩阵的问题。这种情况通常发生在廉价或不可靠的传感器中,或者当伪影抑制技术删除导致等级矩阵的损坏的传感器时,阻碍了基于协方差的方法中Riemannian几何形状的使用。一种替代但可疑的方法包括删除缺少变量的矩阵,从而降低了训练集的大小。我们解决了这些局限性,并提出了一种基于大地凸的新配方。我们的方法在生成的数据集上进行了评估,这些数据集具有受控数量的丢失变量和已知基线,证明了所提出的估计器的鲁棒性。在实际BCI数据集上评估了这种方法的实际利益。我们的结果表明,所提出的平均值比经典数据插补方法更适合分类。关键字:SPD矩阵,平均值,缺少数据,数据插补。
摘要。是在增强学习中的剥削和勘探之间的权衡中的动机,我们研究了在跳跃存在下的连续时间熵调节的均值变化投资组合选择。我们为与表现出L'evy跳跃的多个风险资产相关的财富过程提供了探索性SDE。与现有文献相反,我们研究了与随机控制的财富过程的自然离散时间公式的限制行为,以得出连续的时间动力学。然后,我们表明,尽管处于跳跃模型中,但仍对连续时间熵进行的探索均值变化问题的最佳分布控制仍然是高斯。此外,各自的最佳财富过程求解了一个线性SDE,其表示明确获得。
研究结构缺陷及其对光学材料光学性质的影响是至关重要的,因为在制备用于显示应用的材料时会涉及不同的方法。镧系离子掺杂是一种简单的结构探测策略,它有助于识别结构缺陷。使用 Pechini (C 2 SP) 和水热法 (C 2 SH) 制备纯和铽 (Tb 3 +) 掺杂的 Ca 2 SiO 4 (C 2 S) 粒子。从 SEM 图像中可以看出,Tb 3 + 掺杂的 C 2 SP 粒子比 C 2 SH 粒子更高度聚集。TEM 研究证实,在 180 和 200 C 的高水热温度下制备的 C 2 SH (C 2 S:180H 和 C 2 S:200H) 的粒度减小。 Tb 3 + 掺杂的 C 2 S:180H 和 C 2 S:200H 发生荧光发射猝灭。与 Tb 3 + 掺杂的 C 2 SP、C 2 S:180H 和 C 2 S:200H 相比,在 140 C 下制备的 Tb 3 + 掺杂的 C 2 SH 的发射强度较高。在 X 射线光电子能谱 (XPS) 价带谱中,实验评估了与纯 C 2 SP 和 C 2 S:180H 四面体硅酸盐的上能级价带谱相关的 O2p 轨道的变化。由于硅酸盐单元的扭曲导致对称性降低,从而猝灭了发射,这已由 XPS 价带谱和 Tb 3 + 发射线证实。这项研究表明,与水热法相比,Pechini 法更适合制备 Tb 3 + 掺杂的 C 2 S 荧光粉,特别是在高温下用于固态显示器和闪烁体应用。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
在数值约束优化的背景下,我们研究了通过增强拉格朗日方法处理约束的随机算法,特别是进化策略。在这些方法中,原始约束问题被转变为无约束问题,优化函数是增强拉格朗日,其参数在优化过程中进行调整。然而,使用增强拉格朗日会破坏进化策略的一个核心不变性,即对目标函数严格递增变换的不变性。尽管如此,我们形式化地认为,具有增强拉格朗日约束处理的进化策略应该保持对目标函数严格递增仿射变换和约束缩放的不变性——严格递增变换的一个子类。我们表明这种不变性对于这些算法的线性收敛非常重要,并表明这两个属性是如何联系在一起的。